

Business & Society

Pricing for a low-carbon energy future: How China's Carbon Emissions Trading System drives eco-efficient power generation in China's coal-fired power industry.

Journal:	<i>Business & Society</i>
Manuscript ID	BAS-25-0723
Manuscript Type:	Original Manuscript - Full Length
Keywords:	environmental economics, environmental policy innovation, environmental performance, business and society, business ethics
Abstract:	<p>Enhancing eco-efficient power generation is critical for sustainable energy transitions, especially in carbon-intensive coal-fired power sectors. This study leverages China's Carbon Emissions Trading Scheme (CETS) pilot program as a natural experiment to evaluate its impact on total factor power generation efficiency (TFPGE) in coal-fired power plants. Using an industry-level dataset covering 30 Chinese provinces from 2008 to 2019, we measure TFPGE via a super-efficiency slacks-based measure (SBM) data envelopment analysis (DEA) model, incorporating undesirable outputs like CO₂ emissions. Traditional difference-in-differences and multi-period difference-in-differences (DID) approaches are employed to assess the CETS's effect on TFPGE in pilot versus non-pilot provinces. Findings reveal: (1) a national TFPGE average of 0.9838, with regional variations (East: 1.0003, West: 0.9835, Central: 0.9676); (2) CETS significantly increases TFPGE by 2.9% in pilot regions, robust across tests; (3) the policy's impact is driven by enhanced resource commitment and clean combustion technologies, with stronger effects in western provinces (2.9% TFPGE increase) than central regions (1.7%), amplified by low thermal power dependency; (4) these results support Porter's hypothesis, showing carbon pricing fosters environmental commitment, innovation and efficiency. By highlighting regional heterogeneity, environmental commitment and technological mechanisms, this study addresses gaps in prior literature and offers policy insights for tailoring CETS to regional energy profiles and promoting clean technologies, advancing sustainable energy development in China and globally.</p>

SCHOLARONE™
Manuscripts

1
2
3 **Pricing for a low-carbon energy future: How China's Carbon Emissions**
4 **Trading System drives power generation efficiency in China's coal-fired**
5 **power industry.**
6
7
8
9
10
11

12 List of Figures
13

14 [**Fig. 1 Provincial average TFGE scores**](#)Error! Bookmark not defined.
15

16 [**Fig. 2 Average TFGE values of the three main regions over time**](#) Error! Bookmark not
17 defined.
18

19 [**Fig. 3 CETS pilot areas average TFGE scores before and after policy implementation**](#)
20Error! Bookmark not defined.
21

22 [**Fig. 4 Results of the parallel trend test**](#)Error! Bookmark not defined.
23

24 [**Fig. 5 Results of the province placebo test**](#)Error! Bookmark not defined.
25

26 [**Fig. 6 Kernel density functions before and after matching**](#) Error! Bookmark not defined.
27

28 [**Fig. 7\(a\) Provincial categorization by thermal power share**](#) Error! Bookmark not
29 defined.
30

31 [**Fig. 7\(b\) Province categorization by Log Total GDP**](#)Error! Bookmark not defined.
32



Fig. 1 Provincial average TFGE scores

Fig. 2 Average TFGE values of the three main regions over time

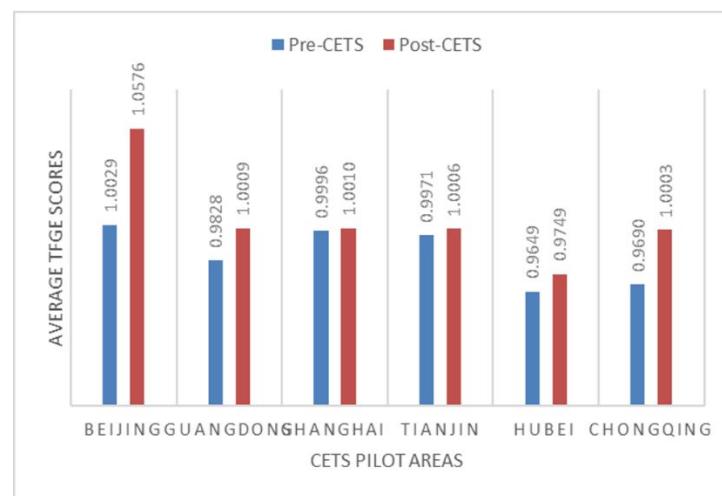


Fig. 3 CETS pilot areas average TFGE scores before and after policy implementation

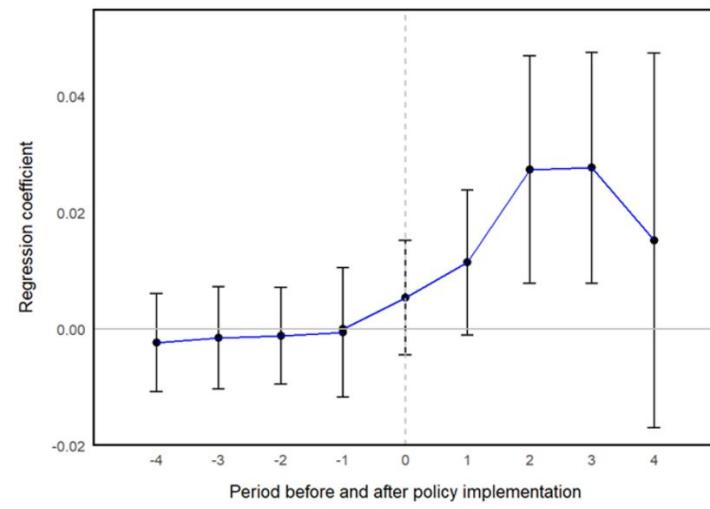


Fig. 4 Results of the parallel trend test

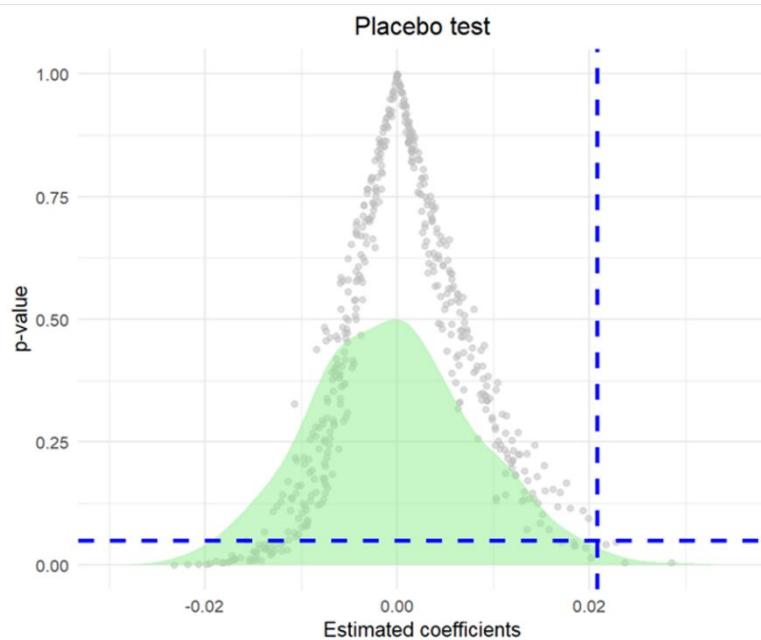


Fig 5 Results of the province placebo test

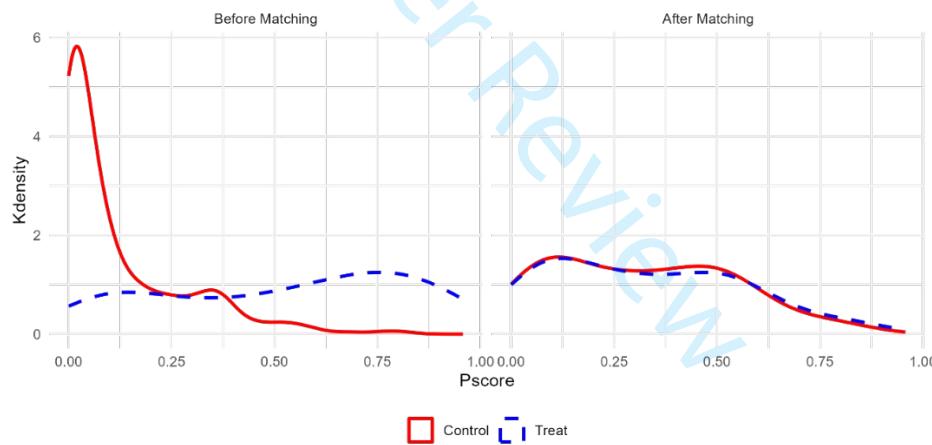


Fig. 6 Kernel density functions before and after matching

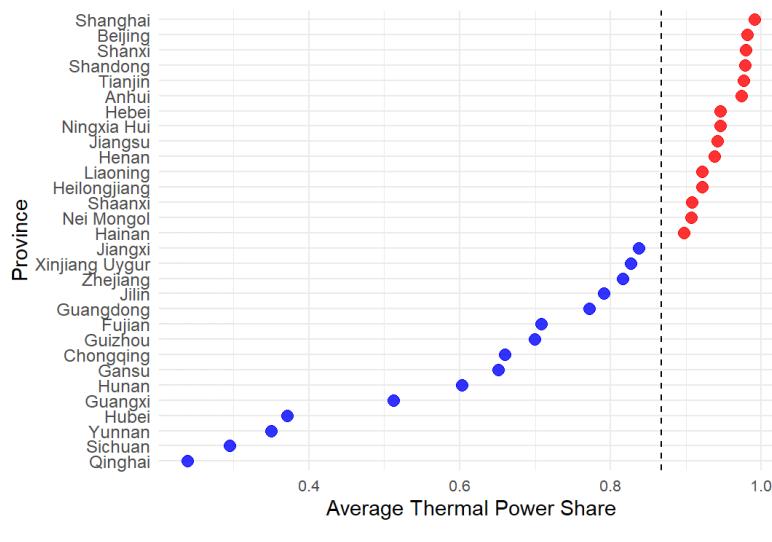


Fig. 7(a) Provincial categorization by thermal power share

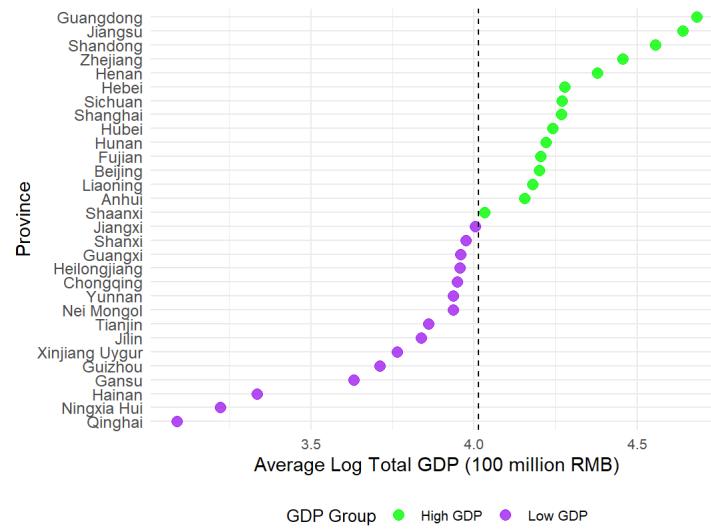


Fig. 8(b) Province categorization by Log Total GDP

1
2
3 **Pricing for a low-carbon energy future: How China's Carbon Emissions**
4 **Trading System drives eco-efficient power generation in China's coal-fired**
5 **power industry.**
6
7
8
9
10
11

12 **ABSTRACT**
13
14
15

16 Enhancing eco-efficient power generation is critical for sustainable energy transitions,
17 especially in carbon-intensive coal-fired power sectors. This study leverages China's Carbon
18 Emissions Trading Scheme (CETS) pilot program as a natural experiment to evaluate its impact
19 on total factor power generation efficiency (TFPGE) in coal-fired power plants. Using an industry-
20 level dataset covering 30 Chinese provinces from 2008 to 2019, we measure TFPGE via a super-
21 efficiency slacks-based measure (SBM) data envelopment analysis (DEA) model, incorporating
22 undesirable outputs like CO₂ emissions. Traditional difference-in-differences and multi-period
23 difference-in-differences (DID) approaches are employed to assess the CETS's effect on TFPGE
24 in pilot versus non-pilot provinces. Findings reveal: (1) a national TFPGE average of 0.9838, with
25 regional variations (East: 1.0003, West: 0.9835, Central: 0.9676); (2) CETS significantly increases
26 TFPGE by 2.9% in pilot regions, robust across tests; (3) the policy's impact is driven by enhanced
27 resource commitment and clean combustion technologies, with stronger effects in western
28 provinces (2.9% TFPGE increase) than central regions (1.7%), amplified by low thermal power
29 dependency; (4) these results support Porter's hypothesis, showing carbon pricing fosters
30 environmental commitment, innovation and efficiency. By highlighting regional heterogeneity,
31 environmental commitment and technological mechanisms, this study addresses gaps in prior
32 literature and offers policy insights for tailoring CETS to regional energy profiles and promoting
33 clean technologies, advancing sustainable energy development in China and globally.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5 **Keywords:** Total factor Power generation efficiency; Carbon emission trading system,
6 Coal-fired power; Environmental resource commitment; Clean combustion technology
7 innovation; Energy structure upgrading
8
9
10
11
12
13
14

15 1. INTRODUCTION 16 17 18

19 The power sector, vital for economic and social stability, is a major driver of global carbon
20 emissions through fossil fuel-based generation, contributing to climate change, pollution, and
21 ecosystem degradation (Nakaishi et al., 2021; W. Wei et al., 2023). Global temperatures are
22 projected to exceed the Paris Agreement's 1.5°C target, with the International Energy Agency's
23 2024 Electricity Outlook reporting a 1% rise in power sector CO2 emissions in 2024, following a
24 1.4% increase in 2023, driven by a 1.3% growth in fossil fuel generation amid a 4.3% surge in
25 electricity demand, totalling 13,800 million tons of CO2.¹ Coal-fired power, which accounted for
26 44% of global CO2 emissions from electricity and heat generation in 2022,² also contributes
27 significantly to air pollutants, producing 75% of SO2, 70% of NOx, and 90% of PM2.5 emissions
28 in 2016 (Nakaishi et al., 2023). With emissions projected to grow by 62% from 2011 to 2050, led
29 by China and India (Kabeyi & Olanrewaju, 2022), transitioning to cleaner energy is critical to meet
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49 ¹ See <https://www.iea.org/reports/electricity-2025>

50
51 ² See <https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer>

1
2
3 the Paris Agreement's 1.5°C target. Improving Total Factor Power Generation Efficiency
4 (TFPGE), which measures how efficiently power plants use resources while minimizing
5 environmental impact, is a key strategy to reduce emissions while meeting rising energy demand.
6
7 However, high costs and uncertain returns often hinder innovation (Sun et al., 2023a). Market-
8 based policies, such as carbon emissions trading, can incentivize efficiency gains through
9 innovation, as suggested by the Porter Hypothesis (Strielkowski et al., 2021; Y. Wei et al., 2024),
10 yet their impact in coal-intensive sectors remains underexplored, particularly across diverse
11 regional contexts.

12
13
14
15 China, the world's largest energy consumer and carbon emitter, faces severe
16 environmental challenges driven by its coal-dominated power sector (L. Xie et al., 2022; G.-X.
17 Zhang et al., 2023). According to the International Energy Agency, in 2022, China's CO₂
18 emissions from fuel combustion reached 10,613 Mt, with coal accounting for 79% of this total³.
19 Coal-fired power, supplying 67.1% of electricity in 2017 compared to a global average of 38.1%,
20 is marked by low efficiency and high emissions, contributing to pollution and resource depletion
21 (Fang et al., 2022; Thakare & Daspute, 2024; X. Wang & Li, 2021; Q. Wu et al., 2023). While
22 transitioning to renewables is essential to address global warming and energy challenges (Y. Liu
23 & Feng, 2023), current renewable capacity remains insufficient to meet demand (Feng et al., 2022).
24 Consequently, improving TFPGE is critical for reducing emissions, ensuring energy security, and
25 achieving China's carbon peak and neutrality goals (Tang et al., 2023; Y. Wei et al., 2022). Given
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51 ³ See <https://www.iea.org/countries/china/emissions#what-are-the-main-sources-of-co2-emissions-in-china>

1
2
3 diverse regional energy profiles, tailored policies like the Carbon Emissions Trading System
4 (CETS) are essential to enhance TFPGE and support China's carbon peak (2030) and neutrality
5
6 (2060) goals
7
8

9
10
11 Transitioning to clean energy is essential for China to meet its carbon peak by 2030 and
12 neutrality by 2060, aligning with the Paris Agreement's target of reducing per capita CO₂
13 emissions by 60–65% from 2005 levels by 2030, as outlined in the 13th Five-Year Plan (F. Dong
14 et al., 2024). China is advancing green energy markets through robust policies (W. Wei et al.,
15 2023), with the Carbon Emissions Trading System (CETS), launched in 2013, emerging as a cost-
16 effective tool to enhance energy efficiency and innovation by making polluters pay for emissions
17 (M. Liu et al., 2022; Pu & Ouyang, 2023; Q. Wu et al., 2023; N. Zhang & Wang, 2024).
18
19 Implemented in seven high-emission regions, including power and steel sectors, CETS's varied
20 regional carbon prices and rules create a natural policy experiment. While studies have examined
21 CETS's effects on environmental governance (Luo et al., 2023), innovation (M. Liu et al., 2022;
22 Pu & Ouyang, 2023; S. Ren et al., 2022), economic growth (S. Wu, 2023), and structural shifts
23 (Ma et al., 2023; J. Wu et al., 2023), its impact on TFPGE in the coal-fired power sector remains
24 underexplored. This gap is critical, as the coal sector's high emissions intensity makes it a key
25 target for decarbonization, yet the efficiency benefits of carbon pricing are unclear. This study
26 addresses this gap by investigating how CETS influences TFPGE, exploring regional variations
27 and innovation mechanisms.
28
29

30
31
32 Examining the link between China's CETS pilot program and TFPGE in the coal-fired
33 power industry is critical for understanding how carbon pricing can support China's energy
34 transition. TFPGE, a measure of how efficiently power plants use resources while minimizing
35 environmental impact, is enhanced by well-designed policies that drive technological innovation
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and energy upgrades. This study tests Porter's weak hypothesis in a coal-dependent context, where
4
5 the weak form predicts CETS fosters green innovation (e.g., clean combustion technologies) and
6 thus improvements in total factor productivity (Yu et al., 2024). While carbon pricing is recognized
7 for reducing emissions (Tello, 2025), its efficiency impacts are debated, with some studies citing
8 innovation-driven gains (R. Chen et al., 2024; Q. Wu & Wang, 2022; Yu et al., 2024), and others
9 noting trade-offs like resource diversion (Sun et al., 2023a) or innovation suppression (Xin-gang
10 et al., 2025a). Moreover, prior research often overlooks CETS's regional variations and
11 mechanisms like environmental resource commitment and clean combustion technologies. Our
12 study addresses these gaps by analysing CETS's impact on TFPGE, its mediating mechanisms,
13 and its regional heterogeneity, offering insights for tailoring carbon pricing to diverse regional
14 contexts. Specifically, our study aims to answer the following questions:

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- (1) How does the CETS pilot policy impact TFPGE in China's coal-fired power industry, and to what extent do regional variations influence this relationship?
- (2) What role do resource commitment and clean combustion technology innovations play in mediating the relationship between the CETS pilot policy and TFPGE in China's coal-fired power industry?
- (3) Does Porter's weak hypothesis hold in the context of the CETS pilot policy's impact on TFPGE in China's coal-fired power industry, particularly in regions with varying energy structures?

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
555510
555511
555512
555513
555514
555515
555516
555517
555518
555519
555520
555521
555522
555523
555524
555525
555526
555527
555528
555529
555530
555531
555532
555533
555534
555535
555536
555537
555538
555539
555540
555541
555542
555543
555544
555545
555546
555547
555548
555549
555550
555551
555552
555553
555554
555555
555556
555557
555558
555559
5555510
5555511
5555512
5555513
5555514
5555515
5555516
5555517
5555518
5555519
5555520
5555521
5555522
5555523
5555524
5555525
5555526
5555527
5555528
5555529
5555530
5555531
5555532
5555533
5555534
5555535
5555536
5555537
5555538
5555539
5555540
5555541
5555542
5555543
5555544
5555545
5555546
5555547
5555548
5555549
5555550
5555551
5555552
5555553
5555554
5555555
5555556
5555557
5555558
5555559
55555510
55555511
55555512
55555513
55555514
55555515
55555516
55555517
55555518
55555519
55555520
55555521
55555522
55555523
55555524
55555525
55555526
55555527
55555528
55555529
55555530
55555531
55555532
55555533
55555534
55555535
55555536
55555537
55555538
55555539
55555540
55555541
55555542
55555543
55555544
55555545
55555546
55555547
55555548
55555549
55555550
55555551
55555552
55555553
55555554
55555555
55555556
55555557
55555558
55555559
555555510
555555511
555555512
555555513
555555514
555555515
555555516
555555517
555555518
555555519
555555520
555555521
555555522
555555523
555555524
555555525
555555526
555555527
555555528
555555529
555555530
555555531
555555532
555555533
555555534
555555535
555555536
555555537
555555538
555555539
555555540
555555541
555555542
555555543
555555544
555555545
555555546
555555547
555555548
555555549
555555550
555555551
555555552
555555553
555555554
555555555
555555556
555555557
555555558
555555559
5555555510
5555555511
5555555512
5555555513
5555555514
5555555515
5555555516
5555555517
5555555518
5555555519
5555555520
5555555521
5555555522
5555555523
5555555524
5555555525
5555555526
5555555527
5555555528
5555555529
5555555530
5555555531
5555555532
5555555533
5555555534
5555555535
5555555536
5555555537
5555555538
5555555539
5555555540
5555555541
5555555542
5555555543
5555555544
5555555545
5555555546
5555555547
5555555548
5555555549
5555555550
5555555551
5555555552
5555555553
5555555554
5555555555
5555555556
5555555557
5555555558
5555555559
55555555510
55555555511
55555555512
55555555513
55555555514
55555555515
55555555516
55555555517
55555555518
55555555519
55555555520
55555555521
55555555522
55555555523
55555555524
55555555525
55555555526
55555555527
55555555528
55555555529
55555555530
55555555531
55555555532
55555555533
55555555534
55555555535
55555555536
55555555537
55555555538
55555555539
55555555540
55555555541
55555555542
55555555543
55555555544
55555555545
55555555546
55555555547
55555555548
55555555549
55555555550
55555555551
55555555552
55555555553
55555555554
55555555555
55555555556
55555555557
55555555558
55555555559
555555555510
555555555511
555555555512
555555555513
555555555514
555555555515
555555555516
555555555517
555555555518
555555555519
555555555520
555555555521
555555555522
555555555523
555555555524
555555555525
555555555526
555555555527
555555555528
555555555529
555555555530
555555555531
555555555532
555555555533
555555555534
555555555535
555555555536
555555555537
555555555538
555555555539
555555555540
555555555541
555555555542
555555555543
555555555544
555555555545
555555555546
555555555547
555555555548
555555555549
555555555550
555555555551
555555555552
555555555553
555555555554
555555555555
555555555556
555555555557
555555555558
555555555559
5555555555510
5555555555511
5555555555512
5555555555513
5555555555514
5555555555515
5555555555516
5555555555517
5555555555518
5555555555519
5555555555520
5555555555521
5555555555522
5555555555523
5555555555524
5555555555525
5555555555526
5555555555527
5555555555528
5555555555529
5555555555530
5555555555531
5555555555532
5555555555533
5555555555534
5555555555535
5555555555536
5555555555537
5555555555538
5555555555539
5555555555540
5555555555541
5555555555542
5555555555543
5555555555544
5555555555545
5555555555546
5555555555547
5555555555548
5555555555549
5555555555550
5555555555551
5555555555552
5555555555553
5555555555554
5555555555555
5555555555556
5555555555557
5555555555558
5555555555559
55555555555510
55555555555511
55555555555512
55555555555513
55555555555514
55555555555515
55555555555516
55555555555517
55555555555518
55555555555519
55555555555520
55555555555521
55555555555522
55555555555523
55555555555524
55555555555525
55555555555526
55555555555527
55555555555528
55555555555529
55555555555530
55555555555531
55555555555532
55555555555533
55555555555534
55555555555535
55555555555536
55555555555537
55555555555538
55555555555539
55555555555540
55555555555541
55555555555542
55555555555543
55555555555544
55555555555545
55555555555546
55555555555547
55555555555548
55555555555549
55555555555550
55555555555551
55555555555552
55555555555553
55555555555554
55555555555555
55555555555556
55555555555557
55555555555558
55555555555559
555555555555510
555555555555511
555555555555512
555555555555513
555555555555514
555555555555515
555555555555516
555555555555517
555555555555518
555555555555519
555555555555520
555555555555521
555555555555522
555555555555523
555555555555524
555555555555525
555555555555526
555555555555527
555555555555528
555555555555529
555555555555530
555555555555531
555555555555532
555555555555533
555555555555534
555555555555535
555555555555536
555555555555537
555555555555538
555555555555539
555555555555540
555555555555541
555555555555542
555555555555543
555555555555544
555555555555545
555555555555546
555555555555547
555555555555548
555555555555549
555555555555550
555555555555551
555555555555552
555555555555553
555555555555554
555555555555555
555555555555556
555555555555557
555555555555558
555555555555559
5555555555555510
5555555555555511
5555555555555512
5555555555555513
5555555555555514
5555555555555515
5555555555555516
5555555555555517
5555555555555518
5555555555555519
5555555555555520
5555555555555521
5555555555555522
5555555555555523
5555555555555524
5555555555555525
5555555555555526
5555555555555527
5555555555555528
5555555555555529
5555555555555530
5555555555555531
5555555555555532
5555555555555533
5555555555555534
5555555555555535
5555555555555536
5555555555555537
5555555555555538
5555555555555539
5555555555555540
5555555555555541
5555555555555542
5555555555555543
5555555555555544
5555555555555545
5555555555555546
5555555555555547
5555555555555548
5555555555555549
5555555555555550
5555555555555551
5555555555555552
5555555555555553
5555555555555554
5555555555555555
5555555555555556
5555555555555557
5555555555555558
5555555555555559
55555555555555510
55555555555555511
55555555555555512
55555555555555513
55555555555555514
55555555555555515
55555555555555516
55555555555555517
55555555555555518
55555555555555519
55555555555555520
55555555555555521
55555555555555522
55555555555555523
55555555555555524
55555555555555525
55555555555555526
55555555555555527
55555555555555528
55555555555555529

1
2
3 30 provinces and cities in mainland China (excluding Tibet Autonomous Region) from 2008 to
4 2019, a period that captures the pre- and post-CETS pilot implementation phases. Using a super-
5 efficiency slacks-based measure (SBM) model integrated with data envelopment analysis (DEA),
6 we calculate TFGE to assess efficiency while accounting for environmental constraints. The
7 findings reveal several key insights:
8
9

10 **First**, the national average TFPGE is 0.9838, with regional variations: the East leads at
11 1.0003, followed by the West at 0.9835, while the Central region lags at 0.9676, due to its heavy
12 coal reliance and slower technology adoption. **Second**, using a Super-efficiency SBM-DEA model,
13 a traditional differences-in-differences (DID), and a multi-period DID accounting for staggered
14 CETS rollouts, we find that the CETS pilot policy modestly improves TFPGE by 2.90% in pilot
15 regions, a result robust to multiple robustness checks, including a parallel trend test, placebo tests,
16 propensity score matching DID (PSM-DID) model, dynamic time window test, quantile
17 regression, and exclusion of specific samples, highlighting the policy's role in decarbonizing a
18 critical sector. **Third**, the policy's effect is mediated by enhanced environmental resource
19 commitment (e.g., investments in efficiency infrastructure) and advanced combustion technologies
20 (e.g., ultra-supercritical systems), which improve efficiency and reduce emissions, offering partial
21 support for Porter's hypothesis, particularly its innovation-driven weak form. **Fourth**,
22 heterogeneity analysis shows CETS is more effective in the West (2.9% TFPGE increase) and East
23 (2.5%) than the Central region (1.7%), reflecting differences in coal dependency and policy
24 enforcement, with stronger gains in low thermal power share regions (2.6%) versus high thermal
25 power share areas (1.46%). These results underscore the role of regional energy profiles in shaping
26 policy outcomes, suggesting region-specific carbon pricing and technology incentives to enhance
27 TFPGE and support sustainable energy transitions.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 This study offers three key contributions to environmental planning and management,
4 focusing on carbon pricing and energy efficiency in China's coal-fired power sector.
5
6

7 **First**, it advances the understanding of Total Factor Power Generation Efficiency (TFPGE)
8 by showing that the CETS pilot policy modestly improves TFPGE by 2.90% in pilot regions, with
9 regional variations: 2.9% in the West, 2.5% in the East, and 1.7% in the Central region, reflecting
10 differences in coal reliance and policy enforcement. While prior studies have explored CETS's
11 role in environmental governance (Cao et al., 2021; X. Li et al., 2024; Q. Wu et al., 2023), they
12 often overlook its impact on efficiency metrics like TFPGE in the coal-fired power sector—a
13 critical area given its dominance in China's energy mix and emissions profile. By focusing on
14 regional heterogeneity, this study offers a fresh perspective on how carbon pricing can be
15 leveraged to improve efficiency, addressing a gap in the literature and providing a foundation for
16 more targeted environmental policies.
17
18

19 **Second**, it enriches the theoretical discourse on environmental regulations by offering
20 partial support for Porter's hypothesis in China's coal-fired power sector. Our findings, supported
21 by instrumental variable analysis, show that CETS drives TFPGE through enhanced environmental
22 resource commitment (e.g., investments in efficiency infrastructure) and advanced combustion
23 technologies (e.g., ultra-supercritical systems), yielding ecological and economic benefits. This
24 contrasts with studies suggesting regulatory trade-offs (Sun et al., 2023b; Xin-gang et al., 2025a)
25 and aligns with innovation-driven gains (R. Chen et al., 2024; Q. Wu & Wang, 2022). By
26 examining industrial structure variations (e.g., 2.6% TFPGE increase in regions with less coal
27 reliance vs. 1.46% in high coal-reliance regions), we contribute to the debate on carbon pricing's
28 "win-win" potential, though profitability impacts remain beyond this study's scope.
29
30

1
2
3 **Third**, the study provides actionable policy insights by identifying mechanisms and
4 contextual factors that enhance CETS's effectiveness. It demonstrates that environmental resource
5 commitment and clean combustion technology are key mediators of the CETS-TFPGE
6 relationship, suggesting a clear pathway for policy interventions to enhance resource commitment
7 towards environmental initiatives and promote technologies like ultra-supercritical systems.
8
9 Additionally, the study's focus on regional and structural heterogeneity—stronger TFPGE gains
10 in regions with less coal dependency—offers a framework for tailoring CETS implementation,
11 such as raising carbon price floors in high coal-reliance regions like the Central region to boost
12 TFPGE. These strategies support sustainable energy transitions in China and other coal-dependent
13 economies, addressing disparities in efficiency gains.
14
15

16 The remainder of this paper is organized as follows: Section “**Literature review**” presents a
17 literature review. Section “**Data and Methodology**” introduces the research methods and data
18 sources. Section “**Analysis and Results**” presents our main results. Section “**Discussion**” presents
19 our discussion. Section “**Conclusion and Policy Implications**” and Section “**Limitations and**
20 **Future Directions**” provide conclusions, policy implications, limitations, and future directions of
21 this study.
22
23

42 **2. LITERATURE REVIEW** 43

44 **2.1 Total Factor Power Generation Efficiency** 45

46 Eco-efficient power generation is vital for energy conservation, emission reduction, and
47 sustainability (X. Wang et al., 2022). Ignoring greenhouse gas constraints misaligns with China's
48 “carbon peak” goals in thermal power (Jiang et al., 2024). Researchers now include undesirable
49 outputs like CO₂ in efficiency assessments to balance economic and environmental goals (Fang et
50
51
52
53
54
55
56
57
58
59
60

al., 2022; Jiang et al., 2024; Thakare & Daspute, 2024). Data Envelopment Analysis (DEA), a nonparametric method, is widely used to measure power generation efficiency (M. Meng & Pang, 2023; Yadava et al., 2025).

Early studies measured generation efficiency via standard coal consumption per kWh, reflecting technological and managerial levels but ignoring non-energy inputs like labor and capital (M. Meng & Pang, 2023). Total Factor Power Generation Efficiency (TFPGE) emerged to comprehensively assess efficiency, incorporating multiple inputs and outputs. Studies like (J. Wang & Wang, 2023) used super-efficiency SBM-DEA to evaluate electricity market reforms' impact on energy efficiency across 30 provinces (2010–2019), while (Nakaishi et al., 2021) assessed 104 coal plants' environmental efficiency in 2010. (Tang et al., 2023) analyzed ultra-low emission standards' effects on thermal power productivity (2010–2018). These highlight socioeconomic and environmental influences on operations, though fixed inputs like capital limit short-term policy impacts (Feng et al., 2022; M. Meng et al., 2023; Q. Wu et al., 2023).

Studies identify key drivers of Total Factor Power Generation Efficiency (TFPGE), including technological progress, trade openness, urbanization, industrial structure, government investment, and low-carbon policies (Eguchi et al., 2021; Jiang et al., 2024; Nakaishi et al., 2022; Tang et al., 2023; J. Wang & Wang, 2023; W. Wei et al., 2023). Technological innovation is the primary driver (Y. Pan et al., 2024). (Eguchi et al., 2021) emphasized technology and coal quality for efficiency in China's coal plants (2009–2011), while (H. Zhang & Wu, 2022) highlighted green technology and renewables. (Y. Pan et al., 2024) found technological and scale efficiency boosted production efficiency in 15 eastern power firms (2016–2020). (F. Dong et al., 2024) confirmed technological progress drives environmental efficiency across 30 provinces. (Jiang et al., 2024) noted efficiency gains in eastern and central regions, with technical efficiency rising in the west

(2013–2017). Regional economic growth and resource disparities enhance thermal power efficiency (Feng et al., 2022; Jindal et al., 2024; F. Ren et al., 2025). Installed capacity growth impacts environmental performance (B.-C. Xie et al., 2021), while management efficiency is vital, and weak organizational structures hinder progress (Nakaishi et al., 2021; Yadava et al., 2025).

Environmental regulations, such as electricity market reforms, ultra-low emission standards, environmental taxes, and carbon pricing, aim to reduce environmental degradation and promote sustainability (Jin et al., 2024). Their impact on power sector efficiency varies. (J. Wang & Wang, 2023) found that market reforms improved energy efficiency across 30 Chinese provinces (2010–2019). (Nakaishi et al., 2023) reported enhanced environmental efficiency in 316 coal plants in 2010. However, ultra-low emission standards can reduce productivity due to high compliance costs (Tang et al., 2023). Despite these insights, limited research explores China's CETS impact on TFPGE in the coal-fired power sector, despite its significant emissions. Regional variations in economic development, energy structures, and mechanisms like environmental resource commitment and clean combustion technology remain underexplored. This study investigates CETS's influence on TFPGE, focusing on regional heterogeneity, environmental commitment, and technological innovation, providing insights into carbon pricing's effect on efficiency.

2.2 Policy background and theoretical hypothesis

2.2.1 China's CETS pilot policy

China's CETS, designed to achieve climate change mitigation goals, emerged as a cost-effective alternative to traditional regulatory approaches during the Twelfth Five-Year Plan (2011–2016) (Bian et al., 2024). Officially launched on October 29, 2011, by the National Development and

1
2
3 Reform Commission, the CETS pilot policy began its first phase in 2013 across seven regions—
4 Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, and Shenzhen—primarily targeting
5 high-emission sectors like power generation (Y. Wei et al., 2022). These regions implemented
6 distinct carbon trading systems, creating a quasi-experimental setting ideal for policy evaluation
7 (N. Zhang & Wang, 2024). By January 2021, the Ministry of Ecology and Environment initiated
8 the national ETS trial phase, focusing on fossil fuel power generation and covering over 2,000
9 emitters and 4 billion tons of CO₂, making it the world's largest ETS. The system enforces
10 government oversight through emissions tracking and verification, promoting accountability and
11 incentivizing decarbonization in the power sector (Ma et al., 2023; N. Zhang & Wang, 2024). As
12 a market-driven policy, the ETS is crucial for decarbonizing China's power sector and achieving
13 national climate goals (Cao et al., 2021; Y. Wei et al., 2022), making its impact a vital research
14 focus.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2.2.1.1 Research on the policy effects of China's CETS pilot policy

China's CETS pilot policy, reflecting global carbon market characteristics, spans diverse industries, significant greenhouse gas emissions, and varying regional carbon intensities, playing a pivotal role in achieving the country's carbon neutrality goals (Cong et al., 2024; Q. Wu & Wang, 2022). Existing research confirms the CETS's effectiveness in promoting decarbonization and efficiency gains. For instance, (G. Li et al., 2023) found that while the CETS advances decarbonization in the power sector, a rebound effect (0.186–0.866) partially offsets these gains, with lower carbon prices exacerbating this effect, highlighting the need for optimized pricing strategies. Similarly, (H. Zhang & Wu, 2022) demonstrated that the CETS significantly enhances energy conservation and emission reductions in pilot regions, while (N. Zhang & Wang, 2024)

1
2
3 reported a 0.043 increase in energy efficiency for ETS-participating plants compared to non-ETS
4 ones. Furthermore, (B.-C. Xie et al., 2021) showed that CETS pilots improved the dynamic
5 environmental efficiency of power generation firms in competitive markets. Despite these insights,
6 the literature on environmental regulations and total factor productivity reveals mixed findings,
7 particularly for market-based tools like the CETS, with limited focus on its impact on TFPGE in
8 the coal-fired power sector—a critical gap given the sector's dominance in China's emissions
9 profile. This study addresses this gap by examining the CETS's influence on TFPGE,
10 incorporating regional heterogeneity, environmental resource commitment, and clean combustion
11 technology innovation as mediating mechanisms, and the moderating role of energy. This novel
12 conceptual framework offers significant theoretical contributions to environmental and energy
13 economics while providing practical insights for designing effective carbon pricing strategies to
14 enhance efficiency in carbon-intensive industries.

33 2.2.2 Research hypothesis

34
35
36 CETS policy has proved to be a cost-effective and significant market-based environmental
37 regulation in China. The CETS policy drives carbon reduction by encouraging enterprises to invest
38 in cleaner production, fostering sustainable economic growth (Bai & Ru, 2024; X. Pan et al., 2022).
39 It mitigates conflicts between economic development and environmental pollution (Bian et al.,
40 2024) by incentivizing coal-fired power firms to adjust processes, reducing carbon permit costs,
41 and enhancing efficiency. Thus, we hypothesize the following.
42
43
44
45
46
47
48
49

50
51 Hypothesis 1: CETS improves the TFPGE of coal-fired power plants in the pilot areas.
52
53
54
55
56
57
58
59
60

1
2
3 This study explores CETS policy mechanisms, examining the mediating effects of
4 environmental resource commitment at the regional level, clean combustion technology
5 innovation, and the moderating effect of industrial structure upgrading.
6
7
8
9
10
11
12
13
14

15
16
17 2.2.2.1 The mediating effect of environmental resource commitment at the local government
18 level
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35 A strong resource base is essential for achieving environmental policy goals, signalling
36 commitment to sustainability (Cho et al., 2023). The resource-based view posits that strategic
37 resource allocation creates lasting benefits, boosting performance (Bendig et al., 2023). Resource
38 advantage theory emphasizes that leveraging resources drives innovation (Varadarajan, 2023). In
39 modern firms, environmental commitments are core strategies, with resource allocation supporting
40 sustainable practices (Y. Li, 2014). Firms with robust ESG strategies innovate to enhance
41 efficiency and cut emissions, as shown in a study of 5,102 Chinese firms from 2006 to 2021
42 (Kenneth David et al., 2024).
43
44

45 Improving efficiency in the coal-fired power sector is costly and risky, requiring
46 government support (Kabeyi & Olanrewaju, 2022). This study examines how local government
47 Environmental Resource Commitment (ERC), measured as provincial environmental policy
48 efforts and green technology investments, mediates the effect of the CETS on TFPGE. Per Porter's
49 hypothesis, CETS encourages provinces to increase ERC through green energy practices,
50 enhancing efficiency and reducing emissions. Provinces with high ERC often have robust
51 monitoring and enforcement systems, ensuring more efficient power plant operations and better
52 TFPGE outcomes due to prior investments in infrastructure and policies (D. Wang et al., 2024).
53
54 Research shows that CETS enhances R&D intensity and fixed-asset investment efficiency in
55
56
57
58
59
60

1
2
3 regulated firms, curbing wasteful spending (H. Dong et al., 2022), while local government
4 penalties further drive green technology innovation (Ou et al., 2024). Strong ERC enables effective
5 management of the carbon market, including setting quotas and providing guidance, encouraging
6 compliance among regulated power plants, and motivating non-targeted power plants to engage in
7 carbon trading. This, in turn, sustains investments in emission-reducing technologies, boosting
8 TFPGE in the regional coal-fired power sector. We propose that ERC significantly mediates the
9 CETS policy's impact on improving TFPGE. Given this, this paper proposes:
10
11
12
13
14
15
16
17
18

19 Hypothesis 2: CETS enhances TFPGE through the mediating effect of increased local
20 government ERC.
21
22

23 25 2.2.2.2 The mediation effect of Clean Combustion Technology Innovation 26

27 29
28 Green development, driven by innovation, transforms industries by boosting efficiency and
30 sustainability (Ou et al., 2024). In the energy sector, innovations lower renewable energy costs and
31 enhance efficiency, supporting cleaner production (Sohag et al., 2024). For Chinese coal power
32 firms, green technology innovation is vital to meet carbon reduction targets and advance China's
33 2030/2060 goals, while strengthening competitiveness (Ou et al., 2024; Thakare & Daspute, 2024;
34 Q. Wu et al., 2023). CETS channels capital to sustainable sectors through clear price signals,
35 promoting clean energy technologies (D. Wang et al., 2024). Porter's hypothesis, aligned with the
36 resource-based view theory, posits that well-designed regulations like CETS drive innovation,
37 enhancing efficiency and reducing emissions (Yu et al., 2024).
38
39

40 Despite neoclassical arguments that CETS raises production costs and limits innovation
41 (W. Zhang et al., 2022), long-term carbon market incentives increase research investment,
42 fostering green technology innovation and efficiency (Fan et al., 2023; Sun et al., 2023a; D. Wang
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

et al., 2024). CETS encourages firms to invest in low-carbon energy technology innovation, improving plant operations and reducing emissions (D. Wang et al., 2024). Firms can offset compliance costs through cleaner production technologies, leveraging an innovation compensation effect (J. Zhu et al., 2019). Studies confirm CETS's positive impact on innovation: (Cong et al., 2024) found that the carbon market significantly boosts green technology innovation in high-energy industries across 209 Chinese cities (2006–2017), particularly in the power sector, while (D. Wang et al., 2024) highlight its role in increasing R&D intensity. Additionally, (X. Meng & Yu, 2023). Focusing on clean combustion technology innovation (CCTI), such as combined heat and power systems and oxy-fuel combustion, this study examines CCTI's mediating role in CETS's effectiveness in improving TFPGE in coal-fired power plants, proposing that these technologies enhance combustion efficiency, reduce emissions, and directly elevate TFPGE. Thus, we propose:

Hypothesis 3: CETS enhances TFPGE through the mediating effect of increased CCTI.

2.2.2.3 The moderating effect of Energy Structure Upgrading

China's secondary industry, a major driver of energy consumption and carbon emissions, poses challenges to energy efficiency goals (K. Du et al., 2021). Shifting to cleaner energy structures is critical for enhancing TFPGE. Environmental regulations, like the CETS, guide industries toward low-carbon alternatives by promoting clean energy and reducing coal dependency (F. Chen et al., 2024). CETS's carbon reduction targets encourage coal-fired power plants to adopt practices like renewable energy integration or advanced clean energy methods, cutting emissions and fossil fuel use (Bai & Ru, 2024). Per Porter's hypothesis, such regulations amplify efficiency gains in regions with advanced industrial structures, as they leverage existing low-carbon infrastructure to respond

1
2
3 to carbon pricing (H. Zhang & Wu, 2022). Thus, we propose:
4
5 Hypothesis 4: The effect of CETS on TFPGE is stronger in regions with greater energy
6
7 structure upgrading, measured as increased renewable energy share and reduced coal reliance.
8
9
10
11
12

13 3. METHODS 14

17 3.1 Variable Construction and Data Sources 18

19 3.1.1 Variable Construction 20

23 3.1.1.1 Dependent Variable 24

25
26 Our dependent variable, TFPGE, measures the resource-efficient production of electricity in
27 China's coal-fired power sector while accounting for environmental impacts, such as CO₂
28 emissions. TFPGE is commonly assessed using DEA models due to their ability to handle multiple
29 inputs and outputs without assuming a specific production function (M. Meng & Pang, 2023).
30
31
32
33
34

38 3.1.1.1.1 Data envelopment analysis (DEA) model development 39

40
41
42 In production theory, efficiency evaluation uses parametric (e.g., Stochastic Frontier Analysis)
43 and non-parametric methods like Data Envelopment Analysis (DEA) (G. Li et al., 2022). DEA, a
44 non-parametric approach, assesses decision-making units (DMUs) by constructing a production
45 frontier, ideal for complex input-output relationships in the coal sector (Banker et al., 1984;
46 Charnes et al., 1978). Unlike SFA, DEA requires no functional form assumptions, handles multiple
47 inputs (e.g., capital, labor) and outputs (e.g., electricity, CO₂), and is unit-invariant (Fang et al.,
48
49
50
51
52
53
54
55
56
57
58
59

1
2
3 2022; Q. Xie et al., 2021; Y. Zhu et al., 2022). The BCC model, an advancement over the CCR
4 model, accounts for variable returns to scale, separating pure technical and scale efficiency
5 (Banker et al., 1984; Yadava et al., 2025). DEA has been widely applied in power sector studies.
6 (Y. Pan et al., 2024) evaluated 15 eastern Chinese power firms (2016–2020) using a model with
7 undesirable outputs and the Malmquist-Luenberger index. (B.-C. Xie et al., 2021) combined DEA
8 game cross-efficiency with the Malmquist index for 18 firms (2007–2016). (Feng et al., 2022)
9 used the Super-DDF model for thermal power efficiency across 30 provinces (2013–2017).
10 (Eguchi et al., 2021) and (F. Dong et al., 2024) applied meta-frontier DEA to analyze coal power
11 inefficiencies and environmental efficiency, respectively.
12
13
14
15
16
17
18
19
20
21
22
23
24

25 Traditional DEA models (e.g., CCR, BCC) often overestimate efficiency by ignoring
26 input/output slacks and struggle to differentiate efficient decision-making units (DMUs) (Nakaishi
27 et al., 2021; Tone, 2001). They also assume deterministic data, overlooking real-world variability
28 (Jin et al., 2024). To address these issues, (Tone, 2001) developed the Slack-Based Measure (SBM)
29 DEA model, a non-radial approach that accounts for slacks, providing a more accurate efficiency
30 measure. The SBM model was adapted to handle undesirable outputs like CO₂, making it suitable
31 for evaluating Total Factor Power Generation Efficiency (TFPGE) under China's Carbon
32 Emissions Trading Scheme (CETS) (J. Du et al., 2010; Tone, 2002). However, it still faces
33 challenges in distinguishing efficient DMUs, leading to the super-efficiency SBM-DEA model,
34 which removes efficient DMUs from the frontier, allowing scores above 1 for finer comparisons
35 among high-performing coal plants (Fang et al., 2022; Tone, 2002). Studies applying SBM-DEA
36 include (J. Wang & Wang, 2023), who analyzed electricity market reforms across 30 Chinese
37 provinces (2010–2019), (Nakaishi et al., 2021), who assessed 104 coal plants, and (Shu et al.,
38 2024), who evaluated global energy efficiency across 168 economies (2000–2017).
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Recognizing the key role of environmental pollution in evaluating power generation efficiency, we adopt the static super-efficiency SBM-DEA model, which accounts for undesirable outputs, to measure TFPGE of China's regional coal-fired power sector from 2008 to 2019, aligning with prior coal sector studies. This approach supports our study's objectives by measuring TFPGE's response to CETS-driven innovations (e.g., ultra-supercritical combustion systems via CCTI) and environmental resource commitment (e.g., ERC), while capturing regional variations in energy structure upgrading. For policymakers, super-efficiency SBM-DEA reveals how coal plants can produce power efficiently while reducing emissions, informing CETS optimization. To assess TFPGE, the DEA model can be described as follows. Each province and city is treated as $DMU_j (j = 1, 2, \dots, n)$ with m input elements $x_{ij} (i = 1, 2, \dots, m)$, s_1 desirable output element y_{rj} ($r = 1, 2, \dots, s_1$) and s_2 undesirable output element $z_g (g = 1, 2, \dots, s_2)$. This study adopts a technology production set with variable returns to scale and an input-output orientation. Therefore, the production possibility set for all DMUs considering undesirable outputs, can be represented as:

$$P = \{(x, y, z) | x \geq X\lambda, y \leq Y\lambda, z \geq Z\lambda, \lambda \geq 0\} \quad (1)$$

where λ represents a constant vector. In the super-efficiency DEA model, the production set must exclude a particular DMU (x_0, y_0, z_0) to create an updated production set, defined as follows:

$$P' \setminus (x_0, y_0, z_0) = \{(\bar{x}, \bar{y}, \bar{z}) | \bar{x} \geq X\lambda, \bar{y} \leq Y\lambda, \bar{z} \geq Z\lambda, \lambda \geq 0\} \quad (2)$$

The above production set shows that, under identical conditions, the inputs of any DMU are at least as large as the collective inputs of all the other DMUs, the desirable outputs do not

1
2
3 exceed the collective desirable outputs of all other DMUs, and the undesirable outputs are at least
4 as large as the collective undesirable outputs of all other DMUs. Additionally, the computation of
5 TFPGE can be expressed through the following mathematical programming model, specifically a
6 super-efficiency SBM-DEA model:
7
8

$$13 \quad \min TFPGE = \frac{1 - \frac{1}{m} \sum_{i=1}^m s_i^- / x_{ik}}{1 - \frac{1}{s_1 + s_2} \left(\sum_{r=1}^{s_1} s_r^+ / y_{rk} + \sum_{g=1}^{s_2} s_g^{z-} / z_{gk} \right)}$$

$$14$$

$$15$$

$$16$$

17 Subject to
18

$$19 \quad \sum_{j=1, \neq k}^n x_{ij} \lambda_j - s_i^- \leq x_{ik} \quad i = 1, 2, \dots, m$$

$$20$$

$$21$$

$$22$$

$$23$$

$$24 \quad \sum_{j=1, \neq k}^n y_{rj} \lambda_j + s_r^+ \geq y_{rk} \quad r = 1, 2, \dots, s_1$$

$$25$$

$$26$$

$$27$$

$$28 \quad \sum_{j=1, \neq k}^n z_{gj} \lambda_j - s_g^{z-} \leq z_{rk} \quad g = 1, 2, \dots, s_2$$

$$29$$

$$30$$

$$31$$

$$32 \quad \sum_{j=1, \neq k}^n \lambda_{ij} = 1$$

$$33$$

$$34$$

$$35$$

$$36 \quad 1 - \frac{1}{s_1 + s_2} \left(\sum_{r=1}^{s_1} s_r^+ / y_{rk} + \sum_{g=1}^{s_2} s_g^{z-} / z_{gk} \right) > 0$$

$$37$$

$$38$$

$$39 \quad \lambda_j \geq 0, s_i^- \geq 0, s_r^+ \geq 0, s_g^{z-} \geq 0$$

$$40$$

$$41$$

$$42 \quad j = 1, 2, \dots, n (j \neq k)$$

$$43$$

$$44 \quad (3)$$

$$45$$

46 where TFPGE represents the value of TFPGE. A TFPGE score exceeding 1 signifies that
47 the DMU is efficient; λ denotes the linear combination ratio; and s_i^- , s_r^+ , s_g^{z-} indicate the potential
48 improvements in input elements, desirable outputs, and undesirable outputs, respectively. The
49 current model is nonlinear and is thus transformed into a linear programming model to facilitate
50
51
52
53
54

1
2
3 easier computation. The total factor power generation efficiency values, TFPGE, are obtained by
4 solving the model above with R software.
5
6

7
8
9 Following (Bi et al., 2014; Emrouznejad & Yang, 2016; M. Meng et al., 2023; M. Meng
10 & Pang, 2023), we treat the coal-fired power sectors in 30 Chinese provinces as DMUs for TFPGE
11 analysis from 2008 to 2019. Three inputs are evaluated: (1) *Capital* (K), calculated as provincial
12 coal-fired power installed capacity multiplied by utilization rate; (2) *Energy consumption* (F),
13 measured as tons of coal used for electricity generation; and (3) *Labor* (L), represented by the year-
14 end employee count in the power sector. Two outputs are evaluated: (1) *Electricity generated* (E),
15 measured in kilowatt-hours (kWh) as the desirable output, based on the provincial coal-fired power
16 industry's electricity consumption relative to total generation; and (2) *CO₂ emissions*, calculated
17 from coal combustion for electricity production, as the undesirable output.
18
19
20
21
22
23
24
25
26
27
28
29
30

31 3.1.1.2 Independent Variable 32 33

34 Our research examines how the CETS pilot policy in China impacts TFPGE in coal-fired power.
35 The policy allows pilot regions—Beijing, Tianjin, Shanghai, Chongqing, Hubei, and
36 Guangdong—to set emission limits based on local conditions, with distinct carbon markets and
37 pricing systems. We analyze this by creating "city and province" dummy variables to distinguish
38 treatment from control groups, and "time" dummy variables to compare pre- and post-CETS
39 periods. The interaction of these two variables serves as the core explanatory variable.
40
41
42
43
44
45
46
47
48
49

50 3.1.1.3 Channel variables 51 52 53 54 55 56 57 58 59 60

3.1.1.3.1 Mediator Variables

To examine the mechanisms underlying the impact of CETS on TFPGE, we hypothesize that environmental resource commitment (ERC) and clean combustion technology innovation (CCTI) serve as two pathways.

Environmental resource commitment level at the regional level (ERC). Referring to the study of (Cho et al., 2023), the environmental resource commitment at the local level is measured using the ratio of fiscal expenditure on environmental protection.

Clean combustion technology innovation (CCTI). Following (He et al., 2023; Ou et al., 2024), this study measures green technological innovation in the coal-fired power industry using efficient and clean combustion technology patent applications. Patents reflect innovation quality and impact (Zhao, 2023), identified via the International Patent Classification Green Inventory (WIPO, 2010) (Hossain et al., 2024). Since patent approvals can lag, they may not capture current innovation (Q. Wu et al., 2023; Xiaobao et al., 2024). We use the CPC Y02E20 classification, part of the Y02 scheme by EPO and USPTO (2013), to count provincial patents on low-emission combustion technologies, crucial for power generation (Acemoglu et al., 2023). Y02E20, under Y02E, targets emission reductions in energy, alongside categories like renewables (Y02E10).

3.1.1.3.2 Moderator effect

To examine the moderation effect in the relationship between CETS and TFPGE, we hypothesize that Energy Structure Upgrading (Str) moderates the relationship between CETS and TFPGE, enhancing CETS's effectiveness in improving PGE. Following (X. Meng & Yu, 2023), we measure Str in the energy sector as the ratio of renewable energy generation to total energy

1
2
3 generation. A higher ratio reflects a shift from fossil fuel dominance to renewables, reducing fossil
4 fuel intensity and promoting sustainable economic development.
5
6
7
8
9
10
11

3.1.1.3.3 Control Variables

12
13 To address endogeneity, we account for several covariates typically included in earlier research
14 (Feng et al., 2022; M. Meng et al., 2023; M. Meng & Pang, 2023; Nakaishi et al., 2022; X. Wei &
15 Zhao, 2024; B.-C. Xie et al., 2021). Specifically, our control variables include: (1) *Population*
16 *density* (POPN), measured by the ratio of the total population at the end of the year to the land area
17 of the administrative district. (2) *Human capital* (Human.capital), calculated by the ratio of
18 education expenditure to the population. (3) *Economic growth* (GDPP), measured by provincial
19 per capita GDP. (4) *Foreign direct investment* (FDI), as measured by the ratio of actual used
20 foreign capital to GDP. (5) *Industrialization* (IS), measured by dividing the added value of the
21 secondary industry by the GDP. A higher ratio reflects greater dependence on the secondary
22 industry for economic development, which typically results in higher energy consumption and
23 increased carbon emissions (X. Wei & Zhao, 2024). (6) *Electricity consumption* (EC), measured
24 as the annual provincial electricity consumption in kilowatt-hours (KWH). The control variables
25 are treated in logarithms in the regression analysis. **Table 1** shows the descriptive statistics for all
26 variables. The average value of TFPGE is 0.9854 (Std. Dev. = 0.0331), ranging from 0.9137 to
27 1.0945, indicating moderate eco-efficiency.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49 **Table 1.** Descriptive statistics of variables

Variables	Observation	Mean	St. Deviation	Min	Max
Total factor power generation efficiency	360	0.9854	0.0331	0.9137	1.0945

1	Treat	360	0.2	0.4003	0	1
2	Treat x Post	360	0.1167	0.3213	0	1
3	Environmental resource commitment	360	1.9893	0.3297	0.8331	2.8736
4	Clean combustion technology innovation	360	1.6155	0.6073	-0.0338	2.8698
5	Population density	360	3.558	0.318	2.744	4.097
6	Human.capital	360	3.178	0.233	2.657	3.715
7	Per capita GDP	360	4.602	0.281	3.987	5.209
8	Foreign direct investment	360	5.318	0.672	3.912	6.73
9	Industrial Structure Upgrading	360	0.2515	0.2193	0.0015	0.9189
10	Industrialization	360	0.9686	0.0108	0.9366	0.9827

3.1.2 Data sources

Given the temporal constraints of CETS implementation and data availability, our study focuses on samples taken from 30 Chinese mainland provinces between 2008 and 2019 (excluding the Tibet Autonomous Region). After filtering out samples with incomplete key variables, our original dataset comprises 360 province-level observations across 30 provinces and cities from 2008 to 2019. The data used in this study were obtained from publicly accessible, proprietary, and published sources. Labor and employment statistics were sourced from the China Population and Employment Statistical Yearbook and the China Statistical Yearbook, published by the National Bureau of Statistics of China (<https://data.stats.gov.cn>). Energy statistics, including fossil energy consumption, were derived from the China Energy Statistical Yearbook, and electricity statistics, including installed capacity and power generation, from the China Electric Power Statistical

1
2
3 Yearbook, both published by the National Bureau of Statistics and the China Electricity Council,
4 respectively. Environmental statistics, including CO₂ emissions, were obtained from the China
5 Statistical Yearbook, the China Provincial Environment Yearbook, and the China Emissions
6 Accounts and Datasets (CEADs) (<https://www.ceads.net>). Clean combustion technologies Patent
7 and intellectual property data were retrieved from the China National Intellectual Property
8 Administration (<https://english.cnipa.gov.cn>), the State Intellectual Property Office of China
9 (SIPO), the World Intellectual Property Organization's Patentscope
10 (<https://www.wipo.int/patentscope/en/>), and the INCOPAT patent database
11 (<https://www.incopat.com>); access to INCOPAT may require a subscription. Green technology
12 data were accessed via the WIPO GREEN platform (<https://www.wipo.int/wipo-green/en/>).
13 Additional data on science and technology were sourced from the China Science and Technology
14 Statistical Yearbook. Data time is from 2008 to 2019 and is subject to the terms of use specified
15 by each provider.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.1.3 Model Construction

3.1.3.1 Difference-in-differences model design

The difference-in-differences (DID) model is a popular approach for assessing policy impacts or natural experiments, estimating causal effects by comparing outcome differences between treatment and control groups. This study employs the DID method to evaluate the impact of China's CETS pilot policy on PGE in the coal-fired power industry across 30 provinces from 2008 to 2019. The policy began in 2013, setting 2013–2019 as the implementation period and 2008–2012 as the pre-policy period. The experimental group includes Beijing, Tianjin, Chongqing,

1
2
3 Shanghai, Hubei, and Guangdong (including Shenzhen), with the remaining provinces as the
4 control group. Thus, the following model is constructed:
5
6

7
8
9 $TFPGE_{it} = \alpha_0 + \alpha_1 treat_{it} \times post_{it} + \delta control_{it} + \gamma_i + \theta_t + \varepsilon_{it}$ (4)
10
11

12 Where i and t represent province and year, respectively. TFPGE stands for total factor
13 power generation efficiency. *treat* denotes the province grouping variable, 1 for pilot provinces
14 of CETS and 0 for non-pilot provinces. *post* is the time grouping variable, 1 for 2013–2018, and
15 for 2008–2012 is 0. Controls are the set of control variables. γ is the province-fixed effect that
16 does not vary with time. θ is the time-fixed effect. ε_{it} is the random error term. The impact of the
17 CETS on TFPGE is estimated mainly by observing the coefficient of *treat* \times *post*.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.1.3.2 Multi-Period DID model

The multi-period difference-in-differences (DID) method effectively captures variations between treatment and control groups before and after policy implementation, mitigating the impact of confounding factors, addressing endogeneity, and accommodating staggered policy rollouts across regions. This study leverages the carbon emission trading pilot as a quasi-natural experiment, employing a multi-period DID model to assess the impact of the CETS pilot program on TFPGE in China's coal-fired power industry, following the methodology of (Xin-gang et al., 2025b)). The benchmark regression model is constructed accordingly.

$$TFPGE_{it} = \alpha_0 + \alpha_1 treat_{it} \times post_{it} + \delta control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (5)$$

Where i and t represent province and year, respectively. TFPGE stands for total factor power generation efficiency. *treat* denotes the province grouping variable, 1 for pilot provinces

of CETS and 0 for non-pilot provinces. $post$ is the time grouping variable, and in this paper, 2013 and 2014 are taken as policy implementation threshold, respectively, and $post_{it} = 1$ indicates that period after policy implementation, and $post_{it} = 0$ represents the period before the policy implementation. Controls are the set of control variables. γ is the province-fixed effect that does not vary with time. θ is the time-fixed effect. ε_{it} is the random error term. The impact of the CETS on TFPGE is estimated mainly by observing the coefficient of $treat \times post$.

3.1.3.2 Model construction of the impact mechanism

3.1.3.2.1 Mediating effect model

To investigate the underlying mechanism, this study chooses environmental resource commitment at the local government level (ERC) and clean combustion technology Innovation (CCTI) as mediator variables. We first examine the impact of the CETS pilot policy on clean combustion technology innovation and environmental resource commitment using Eqs. (6) and (7), respectively. The specific steps are outlined below.

$$\text{Log}(ERC_{it}) = \beta_0 + \beta_1 treat_{it} \times post_{it} + \rho control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (6)$$

$$\text{Log}(CCTI_{it}) = \beta'_0 + \beta'_1 treat_{it} \times post_{it} + \rho control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (7)$$

We proceed to analyse the impact of environmental resource commitment at the local government level (ERC) and clean combustion technology Innovation (CCTI) on total factor generation efficiency using Eqs. (8) and (9), respectively.

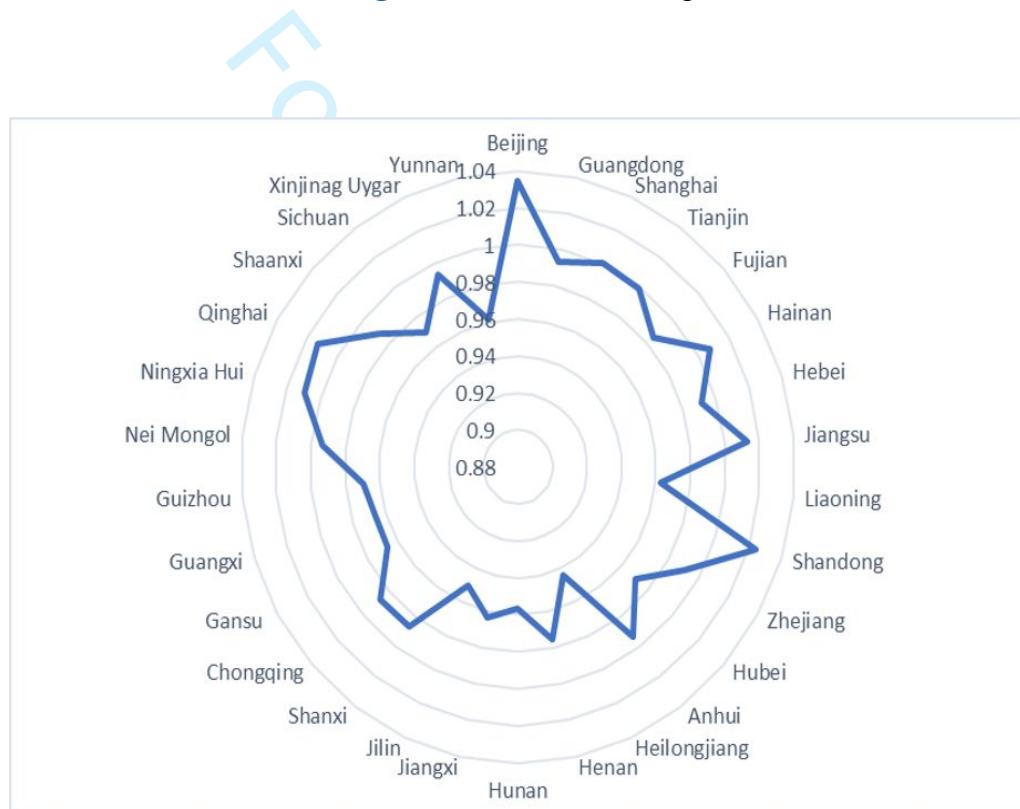
$$TFPGE_{it} = \varphi_0 + \varphi_1 treat_{it} \times post_{it} + \varphi_2 \text{Log}(ERC_{it}) + \theta control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (8)$$

$$1 \\ 2 \\ 3 \quad TFPGE_{it} = \varphi'_0 + \varphi'_1 treat_{it} \times post_{it} + \varphi'_2 \text{Log}(CCTI_{it}) + \theta control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (9) \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60$$

Where coefficients β_1 and β'_1 Capture the impact of the CETS pilot policy on environmental resource commitment at the local government level and clean combustion technology Innovation, respectively. Meanwhile, coefficients $\beta_1 \times \varphi_2$ and $\beta'_1 \times \varphi'_2$ capture the indirect effect of the CETS pilot policy on green total factor energy productivity, while the coefficients φ_1 and φ'_1 Capture the direct effect of the CETS pilot policy on total factor power generation efficiency. The significance of these coefficients indicates a mediating effect.

3.1.3.2.2 Moderating effect model

This study mainly takes reference to the study of (X. Li et al., 2024). And embeds the energy structure upgrading (Str) variable affecting TFPGE into Eq. (1) to examine the significance level of the influence mechanism.


$$TFPGE_{it} = \theta_0 + \omega_1(treat_{it} \times post_{it} \times Str_{it}) + \omega_2(treat_{it} \times post_{it}) + \omega_3 Str_{it} + \tau control_{it} + \gamma_i + \theta_t + \varepsilon_{it} \quad (10)$$

In this equation, the significance of the $treat \times post \times Str$ coefficient is mainly examined, and the remaining variables are defined in accordance with Eq. (1)

4. RESULTS

Using Equation (3), TFPGE was calculated for each province from 2008 to 2019 and results are shown in s **Supplementary Table S2**. High performers like Beijing (mean PGE = 1.03483),

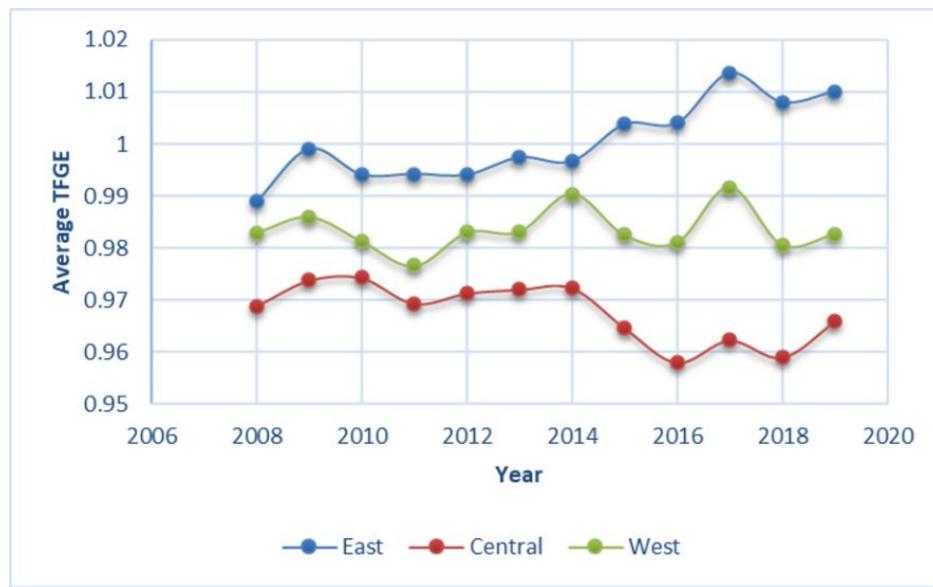

Shandong (1.02424), Qinghai (1.01346), Jiangsu (1.01283), Ningxia Hui (1.00928), Hainan (1.00805), and Shanghai (1.00037) benefit from advanced economic and technological capabilities. Provinces like Tianjin (0.9991), Xinjiang Uyghur (0.9934), Guangdong (0.99339), and Zhejiang (0.9912) show moderate efficiency, driven by high energy demands and industrial focus. Lower performers, including Henan (0.9754), Hubei (0.9706), Sichuan (0.9703), Liaoning (0.9627), Yunnan (0.9611), and Heilongjiang (0.9442), face inefficiencies, weak policy enforcement, and structural issues. **Figure. 1** visualizes these provincial TFPGE variations.

Figure 1 Provincial average TFGE scores.

From 2008 to 2019, the eastern region led in TFPGE, surpassing 1, especially from 2014 to 2019, followed by the western region, while the central region lagged below 1. The East's efficiency stems from advanced technology, high-quality imported coal, skilled labor, and strict

regulations. The central region's lower TFPGE results from slower technology adoption, limited R&D, weaker policy enforcement due to industrial priorities, and reliance on inefficient subcritical plants. **Figure. 2** visualizes these regional TFPGE variations.

Figure. 2 Average TFPGE values of the three main regions over time.

4.2 Baseline results

Table 2 examines the impact of the CETS pilot program on TFPGE in China's coal-fired power industry using a benchmark models in Eqn 1 and 2 (traditional DID, and Multi-period DID, respectively). In column (1), the traditional DID model with province and year fixed effects and control variables shows a significant positive effect of the CETS pilot program (Treat x Post) on TFPGE in pilot provinces compared to non-pilot provinces post-policy implementation. In column (2), the Multi-Period DID model, which accounts for staggered policy timing, yields a slightly lower but still significant effect (coefficient = 0.0276, $p < 0.01$), suggesting a 0.0276- unit increase. These results confirm Hypothesis 1, indicating that the CETS pilot program modestly enhances

1
2
3 TFPGE by approximately 0.0276-0.0290 units in pilot regions, with the Multi-Period DID
4
5 providing robust estimates for staggered policy implementation.
6
7
8

9 **Table 2.** Overall impact of CETS pilot policy on Total factor Power Generation Efficiency
10

Variables	Total factor power generation efficiency	
	Traditional DID (1)	Multi-Period DID (2)
Treat × Post	0.0290*** (0.0072)	0.0276*** (0.0071)
Human.capital	0.0084 (0.0392)	0.0178 (0.0513)
GDPP	-0.0936 (0.0945)	0.1011*** (0.0182)
FDI	0.0098 (0.0138)	0.0153 (0.0744)
EC	0.0772* (0.0330)	0.0941* (0.0354)
POPN	0.1050 (0.0944)	0.0982. (0.0533)
IS	0.3659 (0.6986)	0.2518 (0.8532)
Province FE	Yes	Yes
Year FE	Yes	Yes
N	360	360
R ²	0.7073	0.7041

43 Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10%
44 significant levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations,
45
46 respectively.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4.2 Parallel trend test

The Difference-in-Differences method used as a quasi-experimental approach relies on a key assumption: the parallel trends hypothesis. This means that before the policy change, the Power Generation Efficiency of both the treatment group and the control group should follow the same trend over time. This study uses data from four years before and after the policy implementation to test the parallel trends assumption for PGE. The findings are shown in **Figure 3**. Before the CETS pilot policy began, the estimated coefficients for the treatment and control groups varied slightly around 0 and stayed within the 95% confidence interval, showing no significant difference. This supports the parallel trends assumption.

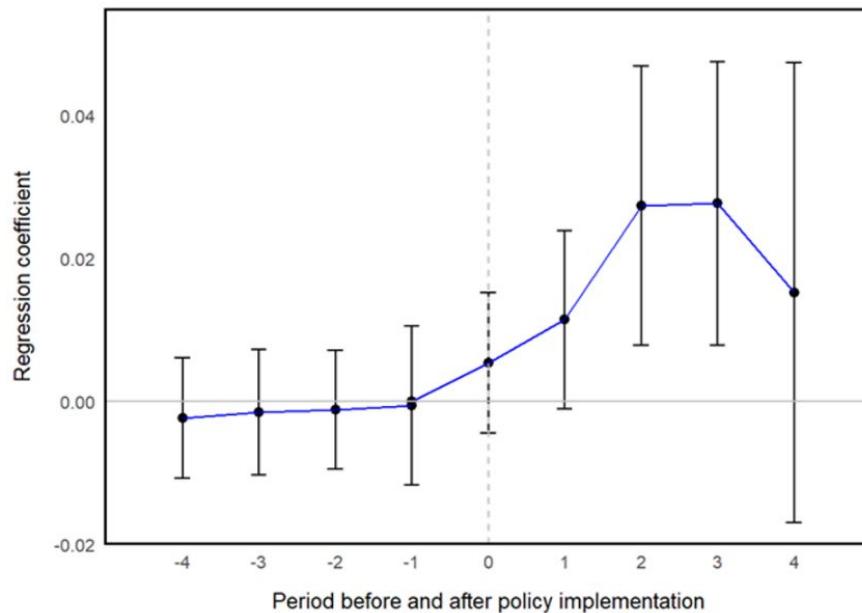
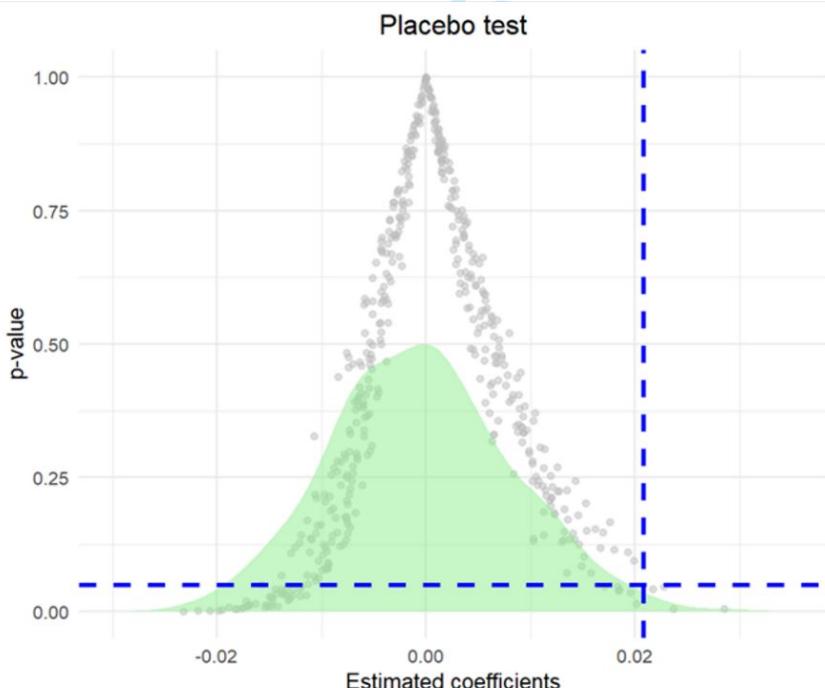



Figure 3. Results of the parallel trend test.

4.3 Placebo test

To ensure that the effect of the CETS pilot policy on TFPGE is not influenced by unknown or unobserved factors, we conducted a placebo test. In this test, we randomly selected 7 out of 30 provinces to form a pseudo-experimental group, treating the remaining provinces as the control group. Using TFPGE as the dependent variable, we performed 1000 random samplings and applied a DID regression for each iteration. **Figure 4** presents the kernel density estimation (KDE) plot of the estimated coefficients for PGE from these placebo tests. The results indicate that the distribution of the placebo coefficients, as well as their mean, significantly deviates from the actual estimated effect of the CETS policy on TFPGE. This deviation suggests that the observed impact of the CETS on TFPGE is robust and unlikely to be driven by other unobservable factors or omitted variables, thereby confirming the reliability of our findings.

Figure 4. Results of the province placebo test.

4.4 Robustness test

4.4.1 Using the PSM-DID model

The DID method may have selection bias, limiting its quasi-natural experiment effectiveness. We validate the regression results using propensity score matching for accuracy. A logit model was applied to match the experimental and control groups using industrialization, population density, energy consumption, and economic development as variables. Caliper matching was used to minimize selection bias due to individual differences. Per (Rosenbaum & Rubin, 1985), a good matching effect is achieved if the absolute standard deviation of sample variables after matching is below 20%, ensuring valid and reliable estimates. The results in Supplementary Table S2 meet Rosenbaum and Rubin's criterion, with p-values above 10%, confirming the validity of the sample matching. **Figure 5** illustrates the matching outcome. After applying DID estimation to the matched samples (results in **Table 3** [column 1]), the CETs continues to significantly enhance TFPGE, supporting the study's conclusions.

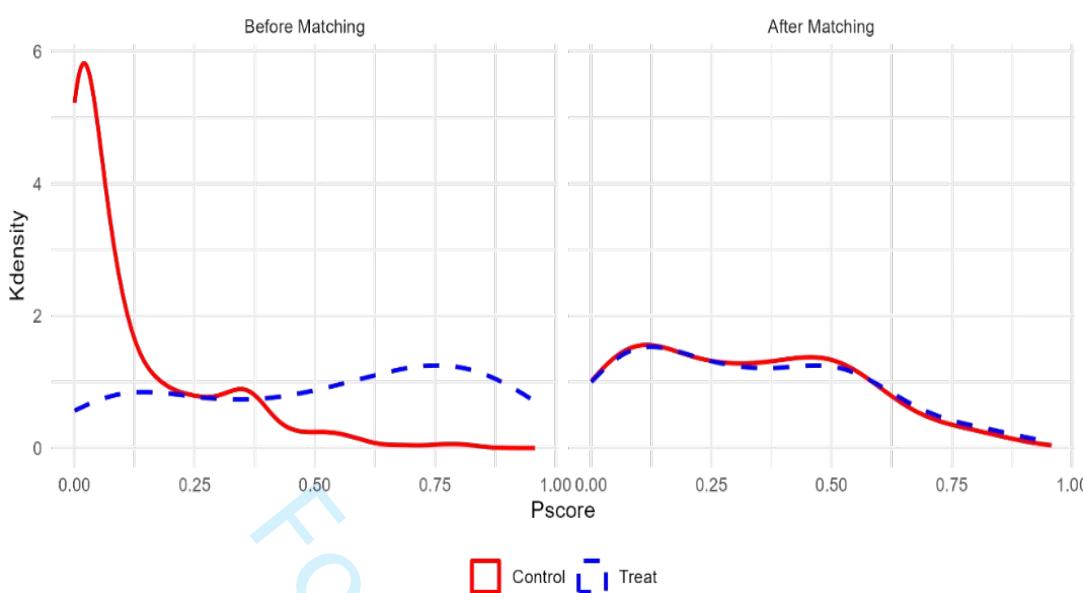


Figure 5. Kernel density functions before and after matching.

4.4.2 Based on the year of replacement policy implementation

To account for the staggered implementation of the CETS across pilot cities from 2013 to 2014 and its delayed impact, this study uses 2015 as the policy implementation base year for a DID analysis. As shown in Column 2 of **Table 3**, the results align closely with those using 2013 as the base year, reinforcing the robustness and reliability of the study's findings on the CETS' positive effect on TFPGE.

4.4.2 Eliminate some special samples

To enhance the accuracy of our regression analysis, we excluded specific samples with unique characteristics. We focused on two cases that could skew the results: (1) Beijing and Shanghai, major economic hubs, likely implemented stricter energy conservation and emission reduction

1
2
3 policies alongside the ETS during the 12th Five-Year Plan, potentially influencing the baseline
4 regression; (2) Chongqing, the only centrally governed municipality in western China, has distinct
5 economic development traits that may also impact the regression outcomes.
6
7
8
9
10

11 We performed two exclusion experiments to address the identified concerns. First, we excluded
12 data from Beijing and Shanghai to remove potential policy overlap effects (results in **Table 3**,
13 column 3). Second, we excluded Chongqing's data to eliminate the influence of its unique Western
14 economic development traits (results in **Table 3**, column 4). After these exclusions, the Treat x
15 Post coefficients remained significant, confirming the robustness and reliability of our baseline
16 regression results.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 3. Results of the robustness test

Variables	Total Factor Power generation efficiency			
	(1)	(2)	(3)	(4)
Treat × Post	0.0274*** (0.0033)	0.0224* (0.0094)	0.0161* (0.0069)	0.0162. (0.0081)
Control	Yes	Yes	Yes	YES
Province FE	Yes	Yes	Yes	YES

Year FE	Yes	Yes	Yes	YES
N	84	360	336	348
R ²	0.8169	0.7141	0.6912	0.7110

Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10% significant levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations, respectively.

4.4.4 Dynamic time windows test

This study builds on the methodology of (X. Li et al., 2024) to examine how the impact of the CETS on PGE varies over different time periods by adjusting the time window around the policy's introduction in 2013. We analyse time windows of 1, 2, 3, and 4 years before and after 2013 to assess the policy's effect. The results, presented in **Table 4**, show that the CETS' effect on TFPGE remains stable across these time windows, with the estimated coefficients and their statistical significance consistently increasing up to the 3-year window before slightly stabilizing. This pattern underscores the robustness and reliability of the findings, confirming the sustained positive impact of the CETS on TFPGE over time.

Table 4. Results of the dynamic time window test

Variables	Dynamic time window test			
	1 year	2 year	3 year	4 year
TFGE	0.0120** (2.47)	0.0203*** (3.10)	0.0233*** (3.09)	0.0218** (2.67)
N	60	120	180	240

1
2
3 Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10%
4 significant levels, respectively. N is the abbreviation for the number of observations.
5
6
7
8

9 4.4.5 Quantile regression 10 11

12 Quantile regression helps address issues like outliers, collinearity, and heteroscedasticity, which
13 can destabilize regression coefficients and skew results. By examining the CETS policy's impact
14 on PGE across different quantiles, we can mitigate these concerns. **Table 5** presents the results,
15 showing that the main explanatory variable of TFPGE, the DID term (Treat x Post), has significant
16 coefficients at the 30%, 60%, and 90% quantiles (0.150, p = 0.017; 0.196, p = 0.045; 0.097, p =
17 0.061, respectively). This indicates robustness of the baseline regression across varying efficiency
18 levels.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 5. Quantile regression results

variables	TFGE		
	(1)	(2)	(3)
Quantile	0.3	0.6	0.9
Treat x Post	0.150** (0.063)	0.196** (0.097)	0.097* (0.052)
Control	YES	YES	YES

Province FE	YES	YES	YES
Year FE	YES	YES	YES
N	360	360	360
R-squared	0.485	0.504	0.208

Standard errors are in parentheses, ** and * indicate the significance at the 5% and 10% levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations, respectively.

4.5 Mechanism effect analysis

The mechanism impact of the CETS pilot policy on TFPGE is examined using the mechanism model constructed above, with ERC and CCTI serving as mediating variables and Str serving as moderating variables. The test results are displayed in **Table 6** Columns (1)-(2) and (3)-(4) of Table 7 test the mediating effects of ERC and CCTI between CETS pilot policy and TFPGE, respectively, and column (5) tests the moderating effect played by Str.

(1) Level of Environmental resource commitment at the local government level

In column (1), the Treat x Post coefficient on ERC is 0.0471 (5% significance), showing the CETS pilot policy increases ERC in pilot provinces. In column (2), with ERC as a mediator, its coefficient is 0.0599 (0.1% significance), and Treat x Period's direct effect on TFPGE is 0.0290 (5% significance), indicating partial mediation. The CETS enhances ERC by improving regulations, supervision, resource allocation, and market environment, which in turn boosts TFPGE, verifying hypothesis 2. Higher ERC further strengthens CETS's impact on TFPGE in the coal-fired power industry.

(2) Clean combustion technology innovation.

In column (3), the Treat x Post coefficient on CCTI is 0.0766 (5% significance), indicating the CETS pilot policy fosters clean combustion technology innovation in pilot provinces. In column (4), with CCTI as a mediator, its coefficient on TFPGE is 0.0428 (0.1% significance), and Treat x Post's direct effect is 0.0293 (1% significance), showing partial mediation. The policy drives technological innovation, enhancing TFPGE, confirming hypothesis 3.

(3) Energy structure upgrading (Str)

In Column (5), the Treat x Post x Str interaction term coefficient is 0.0259 (1% significance), with Treat x Post at 0.0536 (1% significance) and Str at 0.0569 (5% significant). This indicates Energy structure upgrading moderates the CETS policy's effect on TFPGE, confirming hypothesis 4. The policy's impact on TFPGE is stronger in provinces with a higher renewable energy share, highlighting the role of the energy mix.

Table 6. Results of the impact mechanism test

Variables	Mediating effect			Moderating effect	
	ERC	TFPGE	Log (CCTI)	TFPGE	TFPGE
	(1)	(2)	(3)	(4)	(5)

1	Treat × Post × Str	0.0259**
2		(0.0749)
3	Treat × Post	0.0471* 0.0290* 0.0766* 0.0293*** 0.0536**
4		(0.0205) **(0.0070) (0.0355) (0.0067) (0.0194)
5	Structure (Str)	0.0569*
6		(0.0277)
7	ERC	0.0599***
8		(0.0129)
9	CCTI	0.0428***
10		(0.00113)
11	Control	Yes Yes Yes Yes Yes
12	Province FE	Yes Yes Yes Yes Yes
13	Year FE	Yes Yes Yes Yes Yes
14	N	360 360 360 360 360
15	R ²	0.9338 0.91906 0.9146 0.9253 0.7194

38 Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10%
39 significant levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations,
40 respectively.

4.6 Heterogeneity analysis

4.6.1 Subgroup heterogeneous analysis

To explore how the CETS pilot policy varies across regions, we assess its effectiveness by considering factors like economic development, resource availability, and population density. For

1
2
3 instance, the eastern region's favorable terrain and climate support a dense population and
4 industrial growth. To investigate this heterogeneity, we divide 30 provinces into three groups based
5 on China's administrative divisions: eastern, central, and western. The eastern region includes
6 provinces and cities like Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian,
7 Shandong, Guangdong, and Hainan. The Central region includes provinces such as Shanxi, Jilin,
8 Anhui, Jiangxi, Henan, Hubei, Hunan, and Heilongjiang. The western region includes provinces
9 such as Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Inner
10 Mongolia, Guangxi, and Xinjiang.
11
12
13
14
15
16
17
18
19
20
21
22

23 **Table 7** shows that the CETS policy (Treat \times Post) significantly boosted TFPGE across
24 regions, with the West showing the largest increase (0.029***, $p < 0.001$), followed by the East
25 (0.025***, $p < 0.001$) and Central (0.017***, $p < 0.001$). The West's gains stem from its low
26 baseline TFPGE (0.594994) and coal abundance, aiding efficiency upgrades in areas like Inner
27 Mongolia. The East benefits from advanced technology, FDI (0.072***), and energy consumption
28 (0.277***), despite negative impacts from GDP per capita (-0.316***) and population (-0.441**).
29 The Central region's smaller gains reflect structural constraints and weaker policy enforcement,
30 highlighting regional variations in CETS effectiveness.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 **Table 7.** Comparison of CETS effects on TFPGE in different geographical locations

Variables	East	Central	West
	(1)	(2)	(3)
Treat \times Post	0.025***	0.017***	0.029***

	(0.009)	(0.006)	(0.011)
Human.capital	0.056 (0.056)	0.026 (0.048)	0.050 (0.057)
GDPP	-0.316*** (0.099)	-0.019 (0.069)	0.002 (0.082)
FDI	0.072*** (0.023)	0.003 (0.018)	-0.024* (-0.014)
EC	0.277*** (0.084)	0.032 (0.048)	0.009 (0.040)
POPN	-0.441** (0.182)	0.091 (0.123)	0.495** (0.229)
IS	1.396 (1.386)	-0.130 (0.505)	-1.043 (1.124)
Province FE	Yes	Yes	Yes
Year FE	Yes	Yes	Yes
N	142	96	132
R ²	0.257	0.187	0.185

43 Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10%
44 significant levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations,
45 respectively.

46.2 Regional power structure and regional economic development heterogeneous analysis

52 We further examine the CETS policy's impact across provinces, focusing on power structure
53 (thermal power share in total generation) and economic development (total GDP at 2015 constant
54

1
2
3 prices). The thermal power share reflects the industry's role in electricity production, with a higher
4 share indicating greater reliance on thermal power, affecting TFGE outcomes (M. Meng & Pang,
5 2023). A higher share indicates a greater reliance on thermal power, influencing the policy's effect
6 on TFPGE. Total GDP measures economic development levels, highlighting regional disparities
7 in energy structure (Bi et al., 2014; Cao et al., 2021; Jin et al., 2024). This analysis reveals how
8 the energy mix and economic factors influence CETS policy effectiveness.
9
10
11
12
13
14
15

16 We categorized 30 Chinese provinces into subgroups based on pre-policy (2008–2013) averages
17 of thermal power share and total GDP. Provinces with thermal power share above the median
18 (86.75%) were classified as “High thermal” (e.g., Anhui, Beijing), and those below as “Low
19 thermal” (e.g., Chongqing, Fujian). For economic development, provinces with log total GDP
20 above the median (4.015, ~5.543 billion RMB) were “High GDP” (e.g., Beijing, Jiangsu), and
21 those below were “Low GDP” (e.g., Gansu, Qinghai). This classification highlights variations in
22 energy structure and economic development, aiding analysis of CETS policy effectiveness.
23
24
25
26
27
28
29
30
31
32

33 **Figure. 6(a)** and **Figure. 6(b)** illustrate these disparities using data from the China Electric Power
34 Statistical Yearbook and China Statistical Yearbook, respectively. We re-estimate Eqn. 4. The
35 results are presented in **Table 8**.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

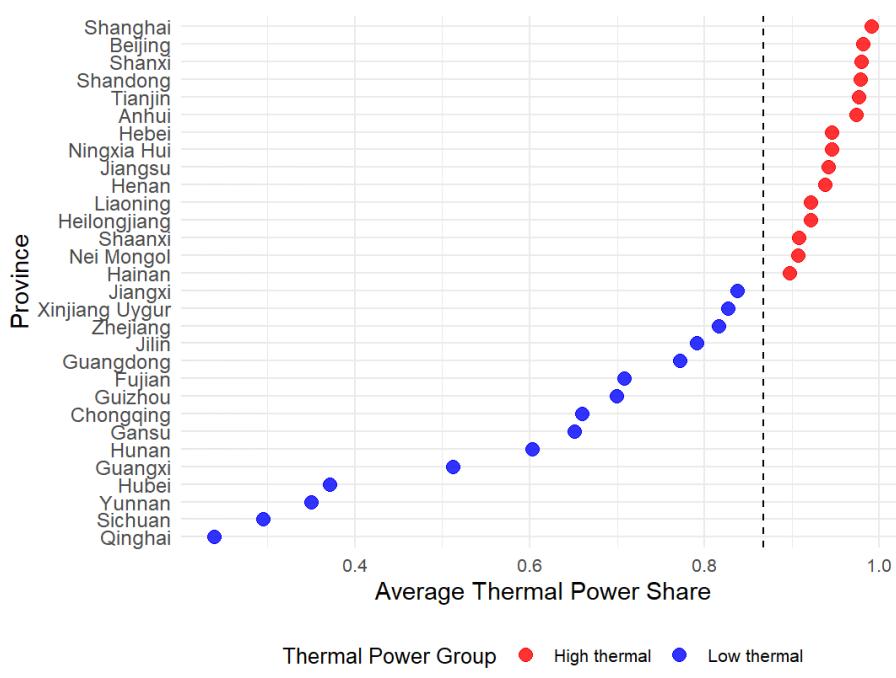


Figure. 6(a) Provincial categorization by thermal power share.

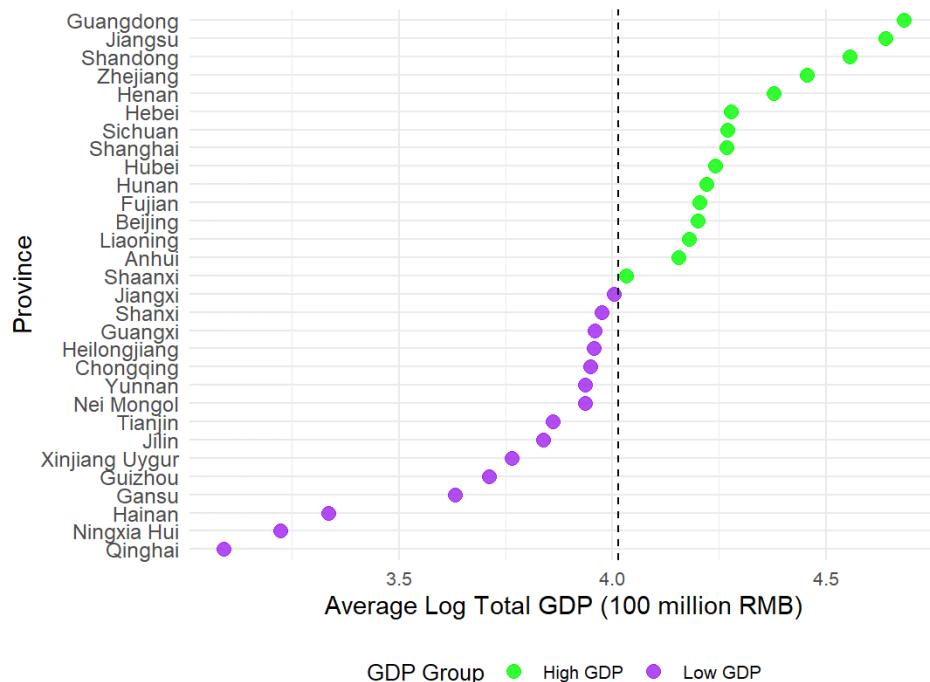


Figure. 6(b) Province categorization by Log Total GDP.

1
2
3 **Table 8**, columns (1) and (2), examines the CETS pilot policy's heterogeneous effects on
4 TFPGE based on thermal power share, using province and year-fixed effects with controls. In high
5 thermal power share provinces (column 1), the policy's effect (Treat x Post) is 0.0146 but not
6 significant. In low thermal power share provinces (column 2), the effect is 0.0260 (0.1%
7 significance), showing greater TFPGE improvement. High thermal share provinces face structural
8 challenges, like higher emission reduction costs and limited alternatives, hindering TFPGE gains.
9 Conversely, low thermal share provinces, with more diversified energy mixes and renewable
10 integration, can adopt cleaner practices more easily, making CETS incentives (e.g., carbon credit
11 trading) more effective in boosting TFPGE.

12
13
14
15
16
17
18
19
20
21
22
23
24 **Table 8**, columns (3) and (4), shows the CETS pilot policy's heterogeneous effects on PGE
25 across economic development levels, using fixed effects and controls. High GDP provinces
26 (column 3) show a non-significant effect (0.0168), while low GDP provinces (column 4) exhibit a
27 significant effect (0.0168, 5% significance), indicating greater policy impact in less developed
28 regions. Low GDP areas, with less advanced infrastructure, see larger efficiency gains through
29 new clean technology investments and face less industrial resistance. Conversely, high GDP
30 regions, with higher baseline efficiency and advanced technology, experience diminishing returns,
31 reducing the CETS's marginal impact on TFPGE. The CETS policy's impact on TFPGE varies by
32 region, showing greater effectiveness in provinces with lower thermal power reliance and lower
33 GDP.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
 2
 3 **Table 8.** Heterogeneous effects of the CETS pilot policy on TFPGE across provinces with
 4 varying thermal power share and levels of economic development
 5
 6

Variables	High thermal	Low thermal	High GDP	Low GDP
	(1)	(2)	(3)	(4)
Treat × Period	0.0146	0.0260***	0.0168	0.0236*
	(0.0137)	(0.0062)	(0.0096)	(0.0105)
Human.capital	0.0917	-0.0599*	0.1200.	-0.0552*
	(0.0800)	(-0.0269)	(0.0676)	(-0.0238)
GDPP	-0.1484	0.0302	-0.2123	-0.0135
	(0.1713)	(0.0973)	(-0.1942)	(-0.0510)
FDI	0.0200	-0.0169	0.0455	-0.0028
	(0.0204)	(-0.196)	(0.0494)	(-0.0078)
EC	0.0990	0.0590	0.2516	0.0776***
	(0.1312)	(0.0343)	(0.1904)	(0.0178)
POPN	0.1247	0.1469.	-0.0834	0.1163
	(0.1425)	(0.0709)	(-0.2254)	(0.0972)
IS	0.4049	-0.8365	-2.773	0.3929
	(0.1312)	(-2.221)	(-2.555)	(0.4418)
Province FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
N	180	180	180	180
R ²	0.7267	0.6391	0.6864	0.8237

1
2
3 Robust standard errors clustered by province parentheses, and values ***, **, *, ., indicate 0.1%, 1%, 5%, and 10%
4 significant levels, respectively. FE and N are the abbreviations for Fixed effects and number of observations,
5 respectively.
6
7
8
9
10

11 5. DISCUSSION 12 13 14

15 This study provides a nuanced examination of the CETS pilot policy's impact on Total Factor
16 Power Generation Efficiency (TFPGE) in China's coal-fired power sector, revealing several key
17 insights that advance both theoretical and practical understanding in environmental planning and
18 management.
19
20
21
22
23

24 First, the CETS pilot policy significantly enhances TFPGE, yielding an average increase
25 of 2.90% across China's provincial coal-fired power sector. This finding aligns with prior studies
26 (Cao et al., 2021; Q. Wu et al., 2023), which suggest that carbon pricing mechanisms impose
27 mandatory constraints that drive efficiency gains. However, our study extends this understanding
28 by focusing on the coal-fired power sector—a critical yet understudied area given its dominant
29 role in China's energy mix and emissions profile. The 2.90% TFPGE increase reflects how CETS
30 promotes resource commitment towards environmentally-friendly production practices and thus
31 incentivizing coal-fired power enterprises to invest in low-carbon technologies, such as advanced
32 combustion systems, which improve production processes and reduce emissions. This result
33 underscores the policy's potential as a tool for balancing energy security with environmental
34 sustainability, particularly in a sector historically resistant to change due to its reliance on coal.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50 Second, the CETS's impact on TFPGE exhibits significant regional heterogeneity, with the
51 western and eastern provinces experiencing greater efficiency gains (2.9% and 2.5%, respectively)
52 compared to the central region (1.7%). This disparity highlights the role of regional economic and
53
54
55
56
57
58
59
60

1
2
3 industrial contexts in shaping policy outcomes. In the eastern region, where coal supports rapid
4 economic growth, CETS likely amplifies efficiency gains by pushing firms to adopt cleaner
5 technologies to meet stringent emission targets. In the western region, despite lower energy
6 consumption, limited technological innovation creates a higher marginal benefit from CETS-
7 driven upgrades, as firms transition from outdated infrastructure. Conversely, the central region's
8 lower TFPGE gains (1.7%) may stem from structural challenges, such as reliance on less efficient
9 subcritical plants, slower adoption of advanced technologies, and weaker policy enforcement due
10 to competing industrial priorities. These findings build on prior research, e.g., (Yu et al., 2024), by
11 emphasizing the need to account for regional variations in CETS implementation—an aspect often
12 overlooked in studies that treat China's provinces as a homogeneous unit. This regional lens offers
13 a fresh perspective, addressing a gap in the literature and providing a foundation for more equitable
14 and effective environmental policies.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Third, the CETS's effect on TFPGE varies with the thermal power share in the energy mix,
32 with provinces having a low thermal power share experiencing a 2.6% PGE increase compared to
33 1.46% in high thermal power share regions. This finding suggests that CETS is more effective in
34 regions with a diversified energy mix, where renewable energy integration facilitates the adoption
35 of cleaner practices. In contrast, high thermal power share regions face structural barriers, such as
36 higher emission reduction costs and limited access to alternative energy sources, which constrain
37 efficiency gains. This result extends the literature by linking energy mix diversity to carbon pricing
38 outcomes, offering a new angle on how industrial structure moderates the CETS-TFPGE
39 relationship. It also provides empirical support for tailoring CETS policies to regional energy
40 profiles, a consideration that adds depth to prior studies, e.g., (R. Chen et al., 2024), and informs
41 the design of localized environmental strategies.

1
2
3 Fourth, the CETS enhances TFPGE by promoting environmental resource commitment
4 and fostering clean combustion technology innovation, key mechanisms driving efficiency gains
5 in the coal-fired power sector. Our analysis reveals that the policy increases the firms' willingness
6 to commitment necessary resources for sustainable power generation, encouraging them to adopt
7 technologies like ultra-supercritical combustion systems, which reduce emissions while improving
8 energy efficiency. This finding aligns with Porter's hypothesis, which posits that environmental
9 regulations can enhance environmental commitment, spur innovation and efficiency, leading to a
10 "win-win" outcome (Porter & Linde, 1995). Unlike studies such as (Tang et al., 2023) and (X.
11 Meng & Yu, 2023), which argue that environmental regulations may stifle innovation due to
12 compliance costs, our results demonstrate that CETS promotes environmental commitment and
13 drives technological advancements in the coal-power sector, supporting the findings of (Ou et al.,
14 2024) and (X. Li et al., 2024) on the environmental benefits of carbon trading. By modestly
15 validating Porter's hypothesis in the specific context of China's coal-fired power sector, this study
16 contributes to the theoretical debate on the environmental commitment and innovation effects of
17 environmental policy. Moreover, the role of environmental resource commitment and clean
18 combustion technology as mediators highlights a practical pathway through which CETS can
19 achieve sustainability goals, offering a concrete mechanism that policymakers can target to
20 amplify the policy's impact.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6. CONCLUSIONS AND POLICY IMPLICATIONS

6.1 CONCLUSIONS

This study examines the impact of China's Carbon Emissions Trading Scheme (CETS) pilot policy on Total Factor Power Generation Efficiency (TFPGE) in the coal-fired power sector across

30 Chinese provinces (2008–2019), employing a super-efficiency SBM DEA model and
difference-in-differences methods. Five key findings emerge. First, TFPGE averages 0.9838, with
the East (1.0003) leading, followed by the West (0.9835) and Central region (0.9676). Second,
CETS increases TFPGE by 2.90% across China's provincial coal-fired power sector. Third,
environmental resource commitment and clean combustion technology innovations mediate the
CETS-TFPGE relationship, as the policy fosters environmental investments and technological
upgrades, enhancing efficiency and reducing emissions. Fourth, regional variations show greater
TFPGE gains in western (2.9%) and eastern (2.5%) provinces than in the central region (1.7%),
reflecting differences in economic development and energy structures. Fifth, aligning with Porter's
hypothesis, CETS drives innovation and efficiency, particularly in regions with diverse industrial
structures. These results highlight CETS as an effective tool for improving TFPGE, with
implications for regional energy transitions and environmental planning. By addressing regional
heterogeneity and technological mechanisms, this study offers insights into carbon pricing's role
in sustainable energy development in a coal-reliant context.

6.2 POLICY IMPLICATIONS

Drawing on our empirical findings, we propose the following policy recommendations to
enhance the CETS's effectiveness in improving TFPGE and advancing sustainable development
in China's coal-fired power sector:

1. Leverage CETS to Drive Clean Combustion Technology Adoption

Our findings confirm that the CETS boosts TFPGE by promoting clean combustion technology
innovations, a key mechanism for efficiency gains and emissions reductions. Local governments

1
2
3 should use CETS as a lever to incentivize coal-fired power enterprises to invest in advanced
4 technologies, such as ultra-supercritical combustion systems or carbon capture and storage (CCS).
5
6 To achieve this, policymakers can adjust carbon prices to make low-carbon technologies more
7 financially attractive, offering subsidies or tax incentives for firms that adopt these innovations.
8
9 This aligns with Porter's hypothesis, which our study validates, showing that environmental
10 regulations can spur technological innovation while improving efficiency. Additionally,
11 governments should establish innovation hubs or public-private partnerships to accelerate the
12 development and deployment of clean combustion technologies, ensuring that coal-dependent
13 regions are not left behind in the energy transition.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2. Tailor CETS Implementation to Regional Contexts

The regional variations in the CETS's impact on TFPGE—stronger in the East (1.0003) and West (0.9835) but weaker in the Central region (0.9676)—underscore the need for context-specific environmental strategies. In the Central region, where coal dependency remains high and TFPGE is lowest, the CETS has not sufficiently reduced fossil fuel reliance. Policymakers should introduce targeted incentives, such as higher carbon prices or grants for phasing out inefficient plants, to accelerate energy structure upgrades. For example, supporting the adoption of renewable energy sources like wind or solar in the Central region could reduce coal dependency while boosting TFPGE. In contrast, the East and West regions, which benefit more from CETS due to their economic development and diversified power structures, can serve as models for best practices, such as integrating CETS with renewable energy subsidies. By tailoring CETS policies to regional industrial and economic contexts, governments can maximize the policy's effectiveness and ensure equitable progress toward sustainability across provinces.

1
2
3 3. Strengthen Inter-Regional Collaboration to Amplify CETS Benefits
4
5
6
7

8 The CETS's positive impact on TFPGE can be amplified through inter-regional collaboration.
9
10 Provinces with higher TFPGE, such as those in the East, can share best practices in clean
11 technology adoption and policy implementation with lagging regions like the Central provinces.
12
13 Governments should establish platforms for knowledge transfer, such as inter-provincial task
14 forces or technology-sharing initiatives, to facilitate the diffusion of successful strategies. For
15 instance, the East's success in achieving a TFPGE of 1.0003 could be replicated in the Central
16 region through workshops on integrating CETS with renewable energy investments. Additionally,
17 fostering industry partnerships between coal-fired power enterprises across regions can promote
18 the adoption of sustainable practices, ensuring that the CETS's benefits extend beyond individual
19 provinces to advance the entire energy sector toward sustainable development.
20
21
22
23
24
25
26
27
28
29
30

31 4. Enhance CETS Oversight with a Focus on Industrial Structure Dynamics
32
33
34
35

36 Our study finds that the CETS's alignment with Porter's hypothesis is moderated by regional
37 industrial structures, with stronger effects in regions with diversified economies. To sustain and
38 enhance these benefits, local governments must strengthen CETS oversight by developing robust
39 monitoring and evaluation frameworks. Regular assessments should track not only TFPGE
40 improvements but also how industrial structures evolve in response to the policy. For example, in
41 coal-heavy regions like the Central provinces, policymakers should monitor whether CETS
42 encourages diversification (e.g., growth in renewable energy sectors) and adjust the policy as
43 needed to prevent over-reliance on coal. This could involve setting regional power generation
44 efficiency targets or linking carbon quotas to industrial diversification goals. By focusing oversight
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 on industrial structure dynamics, governments can ensure that CETS drives long-term
4 sustainability while addressing regional disparities.
5
6

7. LIMITATIONS AND FUTURE DIRECTIONS 8

9
10
11
12 While this study provides valuable insights into the effectiveness of China's CETS pilot policy
13 on TFPGE in the coal-fired power sector, several limitations must be acknowledged to
14 contextualize its findings and guide future research.
15
16

17 First, our analysis is constrained by its focus on the coal-fired power sector across 30
18 Chinese provinces from 2008 to 2019, which limits the generalizability of the findings to other
19 industries, regions, or countries. The coal sector's unique characteristics—such as its high
20 emissions intensity and heavy reliance on clean combustion technologies—may not reflect the
21 dynamics of other sectors like manufacturing or transportation, where CETS might have different
22 impacts on efficiency. Similarly, China's regional economic disparities and policy implementation
23 variations may not mirror conditions in other countries with different energy mixes or regulatory
24 frameworks. Future research should explore the CETS's effects across diverse industries and
25 international contexts, such as comparing its impact in coal-dependent economies like India with
26 more diversified energy systems like those in the European Union, to assess the policy's broader
27 applicability.
28
29

30 Second, due to data constraints, this study examines the short-term impact of CETS on
31 PGE using provincial-level data, leaving the long-term and firm-level effects underexplored. The
32 2008–2019 timeframe captures the initial rollout of the CETS pilot but does not account for its
33 evolution, particularly following the launch of China's national carbon market in 2021. Moreover,
34 provincial-level data obscures firm-level behavioral responses, such as how individual coal-fired
35 power enterprises adjust their investment strategies or technology adoption under CETS. Future
36
37

1
2
3 studies should leverage firm-level datasets to investigate micro-level dynamics, such as how firm
4 size, ownership structure, or financial capacity influence PGE responses to CETS. Additionally,
5 extending the analysis beyond 2019 to include the national CETS phase could reveal long-term
6 trends, such as whether the observed 2.90% TFPGE increase persists or amplifies as the policy
7 matures.
8
9

10 Third, our TFPGE analysis adopts a static approach, which overlooks the dynamic effects
11 of CETS on efficiency over time. The difference-in-differences (DID) and the multi-period DID
12 models used in this study capture average treatment effects but do not account for temporal
13 variations, such as how TFPGE evolves as firms adapt to CETS over multiple years or how policy
14 adjustments (e.g., changes in carbon prices) influence efficiency trajectories. This static
15 perspective limits our understanding of the policy's sustained impact, particularly in regions with
16 varying TFPGE gains (e.g., 2.9% in the West vs. 1.7% in the Central region). Future research
17 should employ dynamic models, such as panel vector autoregression or dynamic DEA approaches,
18 to capture both short-term and long-term effects of CETS on TFPGE, providing a more
19 comprehensive view of its temporal dynamics and regional heterogeneity.
20
21

22 Finally, while our findings modestly support Porter's hypothesis by demonstrating that
23 CETS enhances resource commitment, drives clean combustion technology innovation, and
24 efficiency gains, the optimal intensity of environmental regulation and its interaction with other
25 market-based mechanisms remain unclear. The 2.90% TFPGE increase suggests that CETS is
26 effective, but the policy's impact varies with regional energy structures (e.g., 2.6% TFPGE
27 increase in low thermal power share regions vs. 1.46% in high thermal power share regions),
28 raising questions about whether current carbon pricing levels are optimal for all regions.
29 Additionally, the interplay between CETS and complementary policies, such as carbon taxes or
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 renewable energy subsidies, could amplify its effectiveness, particularly in coal-heavy regions like
4 the Central provinces. Future research should investigate the optimal design of CETS, such as
5 determining the carbon price threshold that maximizes TFPGE without imposing excessive costs
6 on firms. Moreover, studies should explore how CETS interacts with other market-based
7 mechanisms to create a cohesive policy framework, potentially using simulation models or
8 comparative case studies to identify synergies that enhance TFPGE across diverse regional
9 contexts.
10
11

12
13 Despite these limitations, this study makes a significant contribution by providing a
14 regionally nuanced analysis of CETS effects, identifying environmental resource commitment and
15 clean combustion technology as a critical mediator, and validating Porter's hypothesis in the
16 context of China's coal-fired power sector. These findings lay a robust foundation for future
17 research to build upon, particularly in addressing the gaps identified above. By focusing on long-
18 term impacts, firm-level dynamics, temporal effects, and policy interactions, future studies can
19 further enhance our understanding of carbon pricing's role in driving sustainable energy
20 transitions, offering new perspectives for environmental planning and management in coal-
21 dependent economies.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10 **REFERENCES**
11
12

13 Acemoglu, D., Aghion, P., Barrage, L., & Hémous, D. (2023). *Climate Change, Directed*
14 *Innovation, and Energy Transition: The Long-run Consequences of the Shale Gas*
15 *Revolution* (w31657; p. w31657). National Bureau of Economic Research.
16
17
18 <https://doi.org/10.3386/w31657>
19
20
21
22 Bai, J., & Ru, H. (2024). Carbon Emissions Trading and Environmental Protection: International
23 Evidence. *Management Science*, mpsc.2023.03143.
24
25 <https://doi.org/10.1287/mpsc.2023.03143>
26
27
28 Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical
29 and Scale Inefficiencies in Data Envelopment Analysis. *Management Science*, 30(9),
30 1078–1092. <https://doi.org/10.1287/mpsc.30.9.1078>
31
32 Bendig, D., Schulz, C., Theis, L., & Raff, S. (2023). Digital orientation and environmental
33 performance in times of technological change. *Technological Forecasting and Social*
34 *Change*, 188, 122272. <https://doi.org/10.1016/j.techfore.2022.122272>
35
36 Bi, G.-B., Song, W., Zhou, P., & Liang, L. (2014). Does environmental regulation affect energy
37 efficiency in China's thermal power generation? Empirical evidence from a slacks-based
38 DEA model. *Energy Policy*, 66, 537–546. <https://doi.org/10.1016/j.enpol.2013.10.056>
39
40 Bian, Z., Liu, J., Zhang, Y., Peng, B., & Jiao, J. (2024). A green path towards sustainable
41 development: The impact of carbon emissions trading system on urban green
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 transformation development. *Journal of Cleaner Production*, 442, 140943.
4
5 <https://doi.org/10.1016/j.jclepro.2024.140943>

6
7 Cao, J., Ho, M. S., Ma, R., & Teng, F. (2021). When carbon emission trading meets a regulated
8
9 industry: Evidence from the electricity sector of China. *Journal of Public Economics*,
10
11 200, 104470. <https://doi.org/10.1016/j.jpubeco.2021.104470>

12
13
14 Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making
15
16 units. *European Journal of Operational Research*, 2(6), 429–444.
17
18 [https://doi.org/10.1016/0377-2217\(78\)90138-8](https://doi.org/10.1016/0377-2217(78)90138-8)

19
20
21 Chen, F., Shao, M., Chen, W., & Wang, F. (2024). Environmental regulation, energy
22
23 consumption structure, and industrial pollution emissions. *Environmental Research
24 Communications*, 6(1), 015011. <https://doi.org/10.1088/2515-7620/ad1ed5>

25
26
27 Chen, R., Howley, P., & Kesidou, E. (2024). The impact of ETS on productivity in developing
28
29 economies: A micro-econometric evaluation with Chinese firm-level data. *Energy
30 Economics*, 131, 107376. <https://doi.org/10.1016/j.eneco.2024.107376>

31
32
33 Cho, W., Kim, D., & Y. S. Park, A. (2023). Local Government's Resource Commitment to
34
35 Environmental Sustainability: Capacity, Conservatism, and Contractual Dynamics.
36
37 *Urban Affairs Review*, 59(2), 447–475. <https://doi.org/10.1177/10780874211064976>

38
39
40 Cong, J., Zhang, W., Guo, H., & Zhao, Y. (2024). Possible green-technology innovation
41
42 motivated by China's pilot carbon market: New evidence from city panel data. *Climate
43 Policy*, 24(4), 558–571. <https://doi.org/10.1080/14693062.2023.2273939>

44
45 Dong, F., Chen, Y., Sun, J., Li, J., Wang, L., Dong, T., & Cui, J. (2024). Measurement and
46
47 decomposition of environmental efficiency in the power industry based on multi-
48
49
50
51
52
53
54
55
56
57
58
59

1
2
3 hierarchy meta-frontier BAM model. *Journal of Cleaner Production*, 441, 140818.
4
5 <https://doi.org/10.1016/j.jclepro.2024.140818>

6
7 Dong, H., Liu, W., Liu, Y., & Xiong, Z. (2022). Fixed asset changes with carbon regulation: The
8 cases of China. *Journal of Environmental Management*, 306, 114494.
9
10 <https://doi.org/10.1016/j.jenvman.2022.114494>

11
12 Du, J., Liang, L., & Zhu, J. (2010). A slacks-based measure of super-efficiency in data
13 envelopment analysis: A comment. *European Journal of Operational Research*, 204(3),
14
15 694–697. <https://doi.org/10.1016/j.ejor.2009.12.007>

16
17 Du, K., Cheng, Y., & Yao, X. (2021). Environmental regulation, green technology innovation,
18 and industrial structure upgrading: The road to the green transformation of Chinese cities.
19
20 *Energy Economics*, 98, 105247. <https://doi.org/10.1016/j.eneco.2021.105247>

21
22 Eguchi, S., Takayabu, H., & Lin, C. (2021). Sources of inefficient power generation by coal-
23 fired thermal power plants in China: A metafrontier DEA decomposition approach.
24
25 *Renewable and Sustainable Energy Reviews*, 138, 110562.
26
27 <https://doi.org/10.1016/j.rser.2020.110562>

28
29 Emrouznejad, A., & Yang, G. (2016). A framework for measuring global Malmquist–
30 Luenberger productivity index with CO₂ emissions on Chinese manufacturing industries.
31
32 *Energy*, 115, 840–856. <https://doi.org/10.1016/j.energy.2016.09.032>

33
34 Fan, X., Chen, K., & Chen, Y.-J. (2023). Is Price Commitment a Better Solution to Control
35 Carbon Emissions and Promote Technology Investment? *Management Science*, 69(1),
36
37 325–341. <https://doi.org/10.1287/mnsc.2022.4365>

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Fang, T., Fang, D., & Yu, B. (2022). Carbon emission efficiency of thermal power generation in
4 China: Empirical evidence from the micro-perspective of power plants. *Energy Policy*,
5 165, 112955. <https://doi.org/10.1016/j.enpol.2022.112955>

6
7
8 Feng, Y., Lu, C.-C., Lin, I.-F., Yang, A.-C., & Lin, P.-C. (2022). Total Factor Energy Efficiency
9 of China's Thermal Power Industry. *Sustainability*, 14(1), 504.
10
11
12 https://doi.org/10.3390/su14010504

13
14
15 He, C., Xiang, P., & Jiang, K. (2023). Clean Coal Technologies: Transition to a Low Emission
16 Future. In H. Akimoto & H. Tanimoto (Eds.), *Handbook of Air Quality and Climate
17 Change* (pp. 1–32). Springer Nature Singapore. [https://doi.org/10.1007/978-981-15-2527-8_41-1](https://doi.org/10.1007/978-981-15-
18 2527-8_41-1)

19
20
21 Hossain, M. R., Rao, A., Sharma, G. D., Dev, D., & Kharbanda, A. (2024). Empowering energy
22 transition: Green innovation, digital finance, and the path to sustainable prosperity
23 through green finance initiatives. *Energy Economics*, 136, 107736.
24
25 https://doi.org/10.1016/j.eneco.2024.107736

26
27
28 Jiang, N., Zhang, C., Su, W., Jin, H., & Balezentis, T. (2024). Towards carbon-neutral society:
29 Reconciling peak carbon strategy and thermal power generation via regional
30 eco-efficiency analysis. *Sustainable Development*, 32(4), 2944–2961.
31
32 https://doi.org/10.1002/sd.2815

33
34
35 Jin, X., Wang, L., Xie, Q., Li, Y., & Liang, L. (2024). Taxing for a Green Future: How China's
36 Environmental Protection Tax Law Drives Energy Efficiency. *International Journal of
37 Environmental Research*, 18(2), 33. <https://doi.org/10.1007/s41742-024-00584-8>

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Jindal, A., Nilakantan, R., & Sinha, A. (2024). CO2 emissions abatement costs and drivers for
4
5 Indian thermal power industry. *Energy Policy*, 184, 113865.
6
7 https://doi.org/10.1016/j.enpol.2023.113865
8
9
10 Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and
11
12 Low Carbon Grid Electricity Generation and Supply. *Frontiers in Energy Research*, 9,
13
14 743114. https://doi.org/10.3389/fenrg.2021.743114
15
16
17 Kenneth David, L., Wang, J., Angel, V., & Luo, M. (2024). Environmental commitments and
18
19 Innovation in China's corporate landscape: An analysis of ESG governance strategies.
20
21 *Journal of Environmental Management*, 349, 119529.
22
23
24 https://doi.org/10.1016/j.jenvman.2023.119529
25
26 Li, G., Niu, M., Xiao, J., Wu, J., & Li, J. (2023). The rebound effect of decarbonization in
27
28 China's power sector under the carbon trading scheme. *Energy Policy*, 177, 113543.
29
30
31 https://doi.org/10.1016/j.enpol.2023.113543
32
33 Li, G., Ruonan, L., Yingdan, M., & Xiaoli, Z. (2022). Improve technical efficiency of China's
34
35 coal-fired power enterprises: Taking a coal-fired-withdrawl context. *Energy*, 252,
36
37 123979. https://doi.org/10.1016/j.energy.2022.123979
38
39
40 Li, X., Cao, A., Zhang, Y., Zhao, Y., Chen, L., Jiang, P., & Liu, L. (2024). Practical effects of
41
42 carbon emissions trading system on energy efficiency. *Scientific Reports*, 14(1), 279.
43
44
45 https://doi.org/10.1038/s41598-023-50621-3
46
47
48 Li, Y. (2014). Environmental innovation practices and performance: Moderating effect of
49
50 resource commitment. *Journal of Cleaner Production*, 66, 450–458.
51
52
53 https://doi.org/10.1016/j.jclepro.2013.11.044
54
55
56
57
58
59
60

1
2
3 Liu, M., Shan, Y., & Li, Y. (2022). Study on the effect of carbon trading regulation on green
4 innovation and heterogeneity analysis from China. *Energy Policy*, 171, 113290.
5
6 https://doi.org/10.1016/j.enpol.2022.113290
7
8 Liu, Y., & Feng, C. (2023). Promoting renewable energy through national energy legislation.
9
10 *Energy Economics*, 118, 106504. https://doi.org/10.1016/j.eneco.2023.106504
11
12
13
14
15 Luo, G., Guo, J., Yang, F., & Wang, C. (2023). Environmental regulation, green innovation and
16
17 high-quality development of enterprise: Evidence from China. *Journal of Cleaner
18 Production*, 418, 138112. https://doi.org/10.1016/j.jclepro.2023.138112
19
20
21 Ma, G., Qin, J., & Zhang, Y. (2023). Does the carbon emissions trading system reduce carbon
22
23 emissions by promoting two-way FDI in developing countries? Evidence from Chinese
24
25 listed companies and cities. *Energy Economics*, 120, 106581.
26
27 https://doi.org/10.1016/j.eneco.2023.106581
28
29
30
31 Meng, M., & Pang, T. (2023). Total-factor generation performance analysis of China's thermal
32
33 power industry using meta-frontier nonradial distance function approach. *Energy Science
34 & Engineering*, 11(7), 2668–2685. https://doi.org/10.1002/ese3.1468
35
36
37 Meng, M., Pang, T., & Li, X. (2023). Assessing the total factor productivity of China's thermal
38
39 power industry using a network DEA approach with cross-efficiency. *Energy Reports*, 9,
40
41 5196–5205. https://doi.org/10.1016/j.egyr.2023.04.050
42
43
44 Meng, X., & Yu, Y. (2023). Can renewable energy portfolio standards and carbon tax policies
45
46 promote carbon emission reduction in China's power industry? *Energy Policy*, 174,
47
48 113461. https://doi.org/10.1016/j.enpol.2023.113461
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Nakaishi, T., Nagashima, F., & Kagawa, S. (2022). Spatial autocorrelation analysis of the
4 environmental efficiency of coal-fired power plants in China. *Clean Technologies and*
5 *Environmental Policy*, 24(7), 2177–2192. <https://doi.org/10.1007/s10098-022-02310-4>
6
7
8 Nakaishi, T., Nagashima, F., Kagawa, S., Nansai, K., & Chatani, S. (2023). Quantifying the
9 health benefits of improving environmental efficiency: A case study from coal power
10 plants in China. *Energy Economics*, 121, 106672.
11
12 <https://doi.org/10.1016/j.eneco.2023.106672>
13
14 Nakaishi, T., Takayabu, H., & Eguchi, S. (2021). Environmental efficiency analysis of China's
15 coal-fired power plants considering heterogeneity in power generation company groups.
16
17 *Energy Economics*, 102, 105511. <https://doi.org/10.1016/j.eneco.2021.105511>
18
19
20 Ou, K., Shi, Y., & Zhou, W. (2024). An Evolutionary Game Study on Green Technology
21
22 Innovation of Coal Power Firms under the Dual-Regulatory System. *Energies*, 17(3),
23
24 607. <https://doi.org/10.3390/en17030607>
25
26 Pan, X., Pu, C., Yuan, S., & Xu, H. (2022). Effect of Chinese pilots carbon emission trading
27
28 scheme on enterprises' total factor productivity: The moderating role of government
29
30 participation and carbon trading market efficiency. *Journal of Environmental*
31
32 *Management*, 316, 115228. <https://doi.org/10.1016/j.jenvman.2022.115228>
33
34
35 Pan, Y., Wu, J., Zhang, C.-C., & Nasir, M. A. (2024). Measuring carbon emission performance
36
37 in China's energy market: Evidence from improved non-radial directional distance
38
39 function data envelopment analysis. *European Journal of Operational Research*,
40
41 S0377221724008889. <https://doi.org/10.1016/j.ejor.2024.11.019>
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Porter, M. E., & Linde, C. V. D. (1995). Toward a New Conception of the Environment-
4
5 Competitiveness Relationship. *Journal of Economic Perspectives*, 9(4), 97–118.
6
7 https://doi.org/10.1257/jep.9.4.97
8
9
10 Pu, S., & Ouyang, Y. (2023). Can carbon emission trading policy promote green innovation? The
11
12 perspective of corporate operating difficulties. *Journal of Cleaner Production*, 420,
13
14 138473. https://doi.org/10.1016/j.jclepro.2023.138473
15
16
17 Ren, F., Liu, X., Charles, V., Zhao, X., & Balsalobre-Lorente, D. (2025). Integrated efficiency
18
19 and influencing factors analysis of ESG and market performance in thermal power
20
21 enterprises in China: A hybrid perspective based on parallel DEA and a benchmark
22
23 model. *Energy Economics*, 141, 108138. https://doi.org/10.1016/j.eneco.2024.108138
24
25
26 Ren, S., Yang, X., Hu, Y., & Chevallier, J. (2022). Emission trading, induced innovation and
27
28 firm performance. *Energy Economics*, 112, 106157.
29
30 https://doi.org/10.1016/j.eneco.2022.106157
31
32
33 Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a Control Group Using Multivariate
34
35 Matched Sampling Methods That Incorporate the Propensity Score. *The American
36
37 Statistician*, 39(1), 33–38. https://doi.org/10.1080/00031305.1985.10479383
38
39
40 Shu, T., Liao, X., Yang, S., & Yu, T. (2024). Towards sustainability: Evaluating energy
41
42 efficiency with a super-efficiency SBM-DEA model across 168 economies. *Applied
43
44 Energy*, 376, 124254. https://doi.org/10.1016/j.apenergy.2024.124254
45
46
47 Sohag, K., Husain, S., & Soytas, U. (2024). Environmental policy stringency and ecological
48
49 footprint linkage: Mitigation measures of renewable energy and innovation. *Energy
50
51
52
53
54
55
56
57
58
59
60
Economics*, 136, 107721. https://doi.org/10.1016/j.eneco.2024.107721

1
2
3 Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021).
4
5 Renewable Energy in the Sustainable Development of Electrical Power Sector: A
6
7 Review. *Energies*, 14(24), 8240. <https://doi.org/10.3390/en14248240>
8
9
10 Sun, Y., Shen, S., & Zhou, C. (2023a). Does the pilot emissions trading system in China promote
11 innovation? Evidence based on green technology innovation in the energy sector. *Energy*
12
13 *Economics*, 126, 106984. <https://doi.org/10.1016/j.eneco.2023.106984>
14
15
16 Sun, Y., Shen, S., & Zhou, C. (2023b). Does the pilot emissions trading system in China promote
17 innovation? Evidence based on green technology innovation in the energy sector. *Energy*
18
19 *Economics*, 126, 106984. <https://doi.org/10.1016/j.eneco.2023.106984>
20
21
22 Tang, C., Qi, Y., Khan, N. U., Tang, R., & Xue, Y. (2023). Ultra-low emission standards and
23 corporate production performance: Evidence from Chinese thermal power companies.
24
25 *Energy Policy*, 173, 113412. <https://doi.org/10.1016/j.enpol.2022.113412>
26
27
28 Tello, W. P. (2025). Policy interactions and electricity generation sector CO₂ emissions: A
29 quasi-experimental analysis. *Energy Policy*, 198, 114434.
30
31 <https://doi.org/10.1016/j.enpol.2024.114434>
32
33
34 Thakare, H. R., & Daspute, P. (2024). Enhancing energy conservation in power generation in a
35 coal fired thermal power plant through comprehensive energy audit. *Energy*, 301,
36 131661. <https://doi.org/10.1016/j.energy.2024.131661>
37
38
39 Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. *European*
40
41 *Journal of Operational Research*, 130(3), 498–509. [https://doi.org/10.1016/S0377-2217\(99\)00407-5](https://doi.org/10.1016/S0377-2217(99)00407-5)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis.
4
5 *European Journal of Operational Research*, 143(1), 32–41.
6
7 [https://doi.org/10.1016/S0377-2217\(01\)00324-1](https://doi.org/10.1016/S0377-2217(01)00324-1)
8
9
10 Varadarajan, R. (2023). Resource advantage theory, resource based theory, and theory of
11 multimarket competition: Does multimarket rivalry restrain firms from leveraging
12
13 resource Advantages? *Journal of Business Research*, 160, 113713.
14
15 <https://doi.org/10.1016/j.jbusres.2023.113713>
16
17
18 Wang, D., Sun, M., Meng, B., An, Y., Cheng, W., & Ye, B. (2024). Can carbon market
19 efficiency promote green technology innovation for Chinese companies? *Energy*, 309,
20
21 133157. <https://doi.org/10.1016/j.energy.2024.133157>
22
23
24 Wang, J., & Wang, S. (2023). The effect of electricity market reform on energy efficiency in
25 China. *Energy Policy*, 181, 113722. <https://doi.org/10.1016/j.enpol.2023.113722>
26
27
28 Wang, X., & Li, M. (2021). The threshold effect of cost-based environmental regulation on
29 thermal power generation environmental governance efficiency. *Environmental Science
30 and Pollution Research*, 28(17), 21706–21716. <https://doi.org/10.1007/s11356-020-11873-y>
31
32
33
34
35
36
37
38
39
40 Wang, X., Tang, S., Ahmad, M., & Bai, Y. (2022). Can Market-Oriented Environmental
41
42 Regulation Tools Improve Green Total Factor Energy Efficiency? Analyzing the
43
44 Emission Trading System. *Frontiers in Environmental Science*, 10, 906921.
45
46
47 <https://doi.org/10.3389/fenvs.2022.906921>
48
49 Wei, W., Han, Y., Abedin, M. Z., Ma, J., & Chai, S. (2023). Empirical study on the technical
50
51 efficiency and total factor productivity of power industry: Evidence from Chinese
52
53 provinces. *Energy Economics*, 128, 107161. <https://doi.org/10.1016/j.eneco.2023.107161>
54
55
56
57
58
59
60

1
2
3 Wei, X., & Zhao, R. (2024). Evaluation and spatial convergence of carbon emission reduction
4 efficiency in China's power industry: Based on a three-stage DEA model with game
5 cross-efficiency. *Science of The Total Environment*, 906, 167851.
6
7
8
9
10 https://doi.org/10.1016/j.scitotenv.2023.167851
11
12 Wei, Y., Du, M., & Huang, Z. (2024). The effects of energy quota trading on total factor
13 productivity and economic potential in industrial sector: Evidence from China. *Journal of*
14
15 *Cleaner Production*, 445, 141227. https://doi.org/10.1016/j.jclepro.2024.141227
16
17
18 Wei, Y., Zhu, R., & Tan, L. (2022). Emission trading scheme, technological innovation, and
19 competitiveness: Evidence from China's thermal power enterprises. *Journal of*
20
21 *Environmental Management*, 320, 115874.
22
23
24 https://doi.org/10.1016/j.jenvman.2022.115874
25
26
27 Wu, J., Nie, X., & Wang, H. (2023). Curse to blessing: The carbon emissions trading system and
28
29 resource-based cities' carbon mitigation. *Energy Policy*, 183, 113796.
30
31
32 https://doi.org/10.1016/j.enpol.2023.113796
33
34
35 Wu, Q., Tan, C., Wang, D., Wu, Y., Meng, J., & Zheng, H. (2023). How carbon emission prices
36
37 accelerate net zero: Evidence from China's coal-fired power plants. *Energy Policy*, 177,
38
39 113524. https://doi.org/10.1016/j.enpol.2023.113524
40
41
42 Wu, Q., & Wang, Y. (2022). How does carbon emission price stimulate enterprises' total factor
43
44 productivity? Insights from China's emission trading scheme pilots. *Energy Economics*,
45
46 109, 105990. https://doi.org/10.1016/j.eneco.2022.105990
47
48
49 Wu, S. (2023). A systematic review of climate policies in China: Evolution, effectiveness, and
50
51 challenges. *Environmental Impact Assessment Review*, 99, 107030.
52
53
54 https://doi.org/10.1016/j.eiar.2022.107030
55
56
57
58
59
60

1
2
3 Xiaobao, P., Jian, W., Yuhui, C., Ali, S., & Qijun, X. (2024). Does the carbon emission trading
4
5 pilot policy promote green innovation cooperation? Evidence from a quasi-natural
6
7 experiment in China. *Financial Innovation*, 10(1), 14. <https://doi.org/10.1186/s40854-023-00556-5>
8
9
10
11
12 Xie, B.-C., Chen, Y.-F., Gao, J., & Zhang, S. (2021). Dynamic environmental efficiency analysis
13
14 of China's power generation enterprises: A game cross-Malmquist index approach.
15
16 *Environmental Science and Pollution Research*, 28(2), 1697–1711.
17
18
19 <https://doi.org/10.1007/s11356-020-10237-w>
20
21
22 Xie, L., Zhou, Z., & Hui, S. (2022). Does environmental regulation improve the structure of
23
24 power generation technology? Evidence from China's pilot policy on the carbon
25
26 emissions trading market(CETM). *Technological Forecasting and Social Change*, 176,
27
28 121428. <https://doi.org/10.1016/j.techfore.2021.121428>
29
30
31 Xie, Q., Zhang, L. L., Shang, H., Emrouznejad, A., & Li, Y. (2021). Evaluating performance of
32
33 super-efficiency models in ranking efficient decision-making units based on Monte Carlo
34
35 simulations. *Annals of Operations Research*, 305(1–2), 273–323.
36
37
38 <https://doi.org/10.1007/s10479-021-04148-3>
39
40
41 Xin-gang, Z., Xi, X., Shuran, H., & Haowei, C. (2025a). Impact of carbon emissions trading on
42
43 green total factor productivity of China's power industry: A green technology innovation
44
45 perspective. *Journal of Renewable and Sustainable Energy*, 17(1), 015906.
46
47
48 <https://doi.org/10.1063/5.0235309>
49
50
51 Xin-gang, Z., Xi, X., Shuran, H., & Haowei, C. (2025b). Impact of carbon emissions trading on
52
53 green total factor productivity of China's power industry: A green technology innovation
54
55
56
57
58
59
60

1
2
3 perspective. *Journal of Renewable and Sustainable Energy*, 17(1), 015906.
4
5

6 <https://doi.org/10.1063/5.0235309>

7
8 Yadava, A. K., Chakraborty, S., & Gupta, S. (2025). Benchmarking the performance of Indian
9
10 electricity distribution companies: The applications of multi-stage robust DEA and SFA
11
12 models. *Energy Economics*, 108396. <https://doi.org/10.1016/j.eneco.2025.108396>
13
14

15 Yu, Y., Zhang, X., Liu, Y., & Zhou, T. (2024). Carbon emission trading, carbon efficiency, and
16
17 the Porter hypothesis: Plant-level evidence from China. *Energy*, 308, 132870.
18
19 <https://doi.org/10.1016/j.energy.2024.132870>
20

21
22 Zhang, G.-X., Yang, Y., Su, B., Nie, Y., & Duan, H.-B. (2023). Electricity production, power
23
24 generation structure, and air pollution: A monthly data analysis for 279 cities in China
25
26 (2015–2019). *Energy Economics*, 120, 106597.
27
28 <https://doi.org/10.1016/j.eneco.2023.106597>
29

30
31 Zhang, H., & Wu, J. (2022). The Energy Saving and Emission Reduction Effect of Carbon
32
33 Trading Pilot Policy in China: Evidence from a Quasi-Natural Experiment. *International
34
35 Journal of Environmental Research and Public Health*, 19(15), 9272.
36
37 <https://doi.org/10.3390/ijerph19159272>
38

39
40 Zhang, N., & Wang, S. (2024). Can China's regional carbon market pilots improve power plants'
41
42 energy efficiency? *Energy Economics*, 129, 107262.
43
44 <https://doi.org/10.1016/j.eneco.2023.107262>
45

46
47 Zhang, W., Li, G., & Guo, F. (2022). Does carbon emissions trading promote green technology
48
49 innovation in China? *Applied Energy*, 315, 119012.
50
51 <https://doi.org/10.1016/j.apenergy.2022.119012>
52
53
54
55
56
57
58
59
60

1
2
3 Zhao, C. (2023). Is low-carbon energy technology a catalyst for driving green total factor
4 productivity development? The case of China. *Journal of Cleaner Production*, 428,
5
6 139507. <https://doi.org/10.1016/j.jclepro.2023.139507>

7
8
9
10 Zhu, J., Fan, Y., Deng, X., & Xue, L. (2019). Low-carbon innovation induced by emissions
11 trading in China. *Nature Communications*, 10(1), 4088. <https://doi.org/10.1038/s41467-019-12213-6>

12
13
14
15
16
17 Zhu, Y., Yang, F., Wei, F., & Wang, D. (2022). Measuring environmental efficiency of the EU
18 based on a DEA approach with fixed cost allocation under different decision goals.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Zhu, Y., Yang, F., Wei, F., & Wang, D. (2022). Measuring environmental efficiency of the EU
based on a DEA approach with fixed cost allocation under different decision goals.
Expert Systems with Applications, 208, 118183.
<https://doi.org/10.1016/j.eswa.2022.118183>

Supplementary Material

1
2
3
4
5
6
7 **Pricing for a low-carbon energy future: How**
8
9
10 **China's Carbon Emissions Trading System**
11
12
13 **drives eco-efficient power generation in**
14
15 **China's coal-fired power industry.**

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 **List of the supporting information:**
34
35
36
37 **Supplementary Table S1.** TFPGE values for China's provincial coal-fired power industry.
38 **Supplementary Table S2.** Comparison of sample means before and after matching.

1
 2
3 Supplementary Table S1. TFPGE values for China's provincial coal-fired power
 4 industry
 5
 6

Region	Province	Total Factor Power Generation Efficiency												
		2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Mean
East	Beijing	1.0029	1.0002	1.0001	1.0002	1.0112	1.0145	1.0165	1.0494	1.0552	1.0897	1.0836	1.0943	1.03483
	Guangdong	0.9714	0.9843	0.9852	0.9783	0.9950	1.0000	1.0001	1.0004	1.0001	1.0049	1.0004	1.0006	0.99340
	Shanghai	1.0028	1.0031	1.0011	1.0001	0.9907	1.0015	1.0024	1.0005	1.0005	1.0006	1.0006	1.0007	1.00037
	Tianjin	0.9957	0.9945	1.0047	1.0002	0.9904	1.0002	1.0004	1.0012	1.0004	1.0005	1.0006	1.0008	0.99913
	Fujian	0.9810	0.9851	0.9850	1.0006	1.0000	0.9910	0.9876	0.9736	1.0139	0.9719	0.9655	0.9636	0.98490
	Hainan	1.0089	1.0087	1.0038	1.0180	1.0113	1.0061	1.0064	1.0049	1.0026	1.0061	1.0071	1.0127	1.00805
	Hebei	0.9686	1.0189	0.9745	1.0025	0.9792	0.9852	0.9853	1.0006	0.9806	1.0003	1.0009	1.0005	0.99144
	Jiangsu	1.0089	1.0152	1.0199	1.0196	1.0116	1.0151	1.0174	1.0049	1.0087	1.0155	1.0098	1.0072	1.01283
	Liaoning	0.9688	0.9683	0.9656	0.9507	0.9637	0.9695	0.9702	0.9586	0.9595	0.9749	0.9512	0.9517	0.96271
	Shandong	0.9847	1.0191	1.0004	0.9787	0.9804	0.9872	0.9871	1.0496	1.0355	1.0899	1.0838	1.0945	1.02424
Central	Zhejiang	0.9837	0.9917	0.9938	0.9868	1.0001	1.0005	0.9889	0.9974	0.9866	0.9956	0.9847	0.9845	0.99119
	Henan	0.9652	0.9682	0.9691	0.9631	0.9590	0.9662	0.9824	1.0005	0.9918	0.9486	0.9530	0.9821	0.97076
	Anhui	0.9850	0.9913	1.0001	0.9935	0.9913	0.9923	1.0000	1.0001	0.9860	1.0000	0.9881	0.9903	0.99318
	Heilongjiang	0.9442	0.9596	0.9577	0.9444	0.9572	0.9468	0.9493	0.9372	0.9267	0.9295	0.9398	0.9374	0.94416
	Shaanxi	0.9718	0.9774	0.9739	0.9775	0.9741	0.9818	0.9794	0.9682	0.9687	0.9753	0.9686	0.9875	0.97536
	Hunan	0.9648	0.9680	0.9676	0.9747	0.9629	0.9611	0.9591	0.9422	0.9311	0.9396	0.9431	0.9638	0.95650
	Jiangxi	0.9679	0.9658	0.9687	0.9631	0.9726	0.9747	0.9650	0.9504	0.9517	0.9630	0.9643	0.9550	0.96353
	Jilin	0.9599	0.9656	0.9567	0.9502	0.9636	0.9585	0.9530	0.9393	0.9318	0.9567	0.9363	0.9346	0.95052
	Shanxi	0.9915	0.9944	1.0001	0.9878	0.9896	0.9947	0.9902	0.9794	0.9756	0.9851	0.9781	0.9756	0.98684
	Chongqing	0.9703	0.9838	0.9574	0.9593	0.9745	0.9759	1.0004	1.0131	1.0050	1.0003	1.0160	0.9912	0.98727
West	Gansu	1.0001	0.9760	0.9696	0.9710	1.0009	0.9741	0.9613	0.9516	0.9376	0.9483	0.9395	0.9703	0.96669
	Guangxi	0.9658	0.9726	0.9802	0.9847	0.9765	0.9753	0.9682	0.9462	0.9378	0.9798	0.9543	0.9541	0.96628
	Guizhou	0.9886	0.9937	0.9889	0.9652	0.9778	0.9646	0.9633	0.9537	0.9457	0.9581	0.9589	0.9748	0.96944
	Nei Mongol	1.0030	1.0013	0.9894	0.9862	0.9862	1.0003	1.0016	1.0001	0.9803	1.0000	0.9852	0.9853	0.99324
	Ningxia Hui	0.9951	0.9937	0.9890	1.0194	1.0114	1.0149	1.0135	1.0125	1.0114	1.0136	1.0164	1.0204	1.00928
	Qinghai	1.0087	1.0144	1.0197	1.0114	1.0111	1.0132	1.0172	1.0207	1.0085	1.0022	1.0144	1.0200	1.01346
	Shaanxi	0.9925	0.9803	1.0003	0.9905	0.9796	1.0017	1.0014	0.9698	1.0011	1.0001	0.9654	0.9680	0.98757
	Sichuan	0.9490	0.9561	0.9551	0.9401	0.9618	0.9526	1.0003	0.9261	1.0014	1.0010	1.0000	1.0002	0.97031
	Xinjiang Uygur	0.9757	1.0002	0.9774	0.9665	0.9737	0.9807	1.0114	1.0128	1.0032	1.0042	1.0044	1.0113	0.99344
	Yunnan	0.9634	0.9733	0.9667	0.9477	0.9590	0.9607	0.9554	1.0004	0.9598	1.0004	0.9324	0.9137	0.96108
Central mean		0.9888	0.9990	0.9940	0.9942	0.9940	0.9973	0.9966	1.0037	1.0040	1.0136	1.0080	1.0101	1.000282
		0.9688	0.9738	0.9742	0.9693	0.9713	0.9720	0.9723	0.9647	0.9579	0.9622	0.9589	0.9658	0.967605
		0.9829	0.9859	0.9812	0.9765	0.9830	0.9831	0.9904	0.9825	0.9811	0.9916	0.9806	0.9827	0.98346

1
2
3 **Supplementary Table S2.** Comparison of sample means before and after matching
4

5	Variable	6	Status	7	Mean_	8	Mean_	9	%Bias	10	%Reduction	11	t_stat	12	p_value	13	Var_Ratio
14		15	Matched	16	Treated	17	Control										
18		19	Unmatched	20		21		22		23		24		25		26	
EC	M	3.181	3.212	-9	-21.6	-0.41	0.681	1.26									
EC	U	3.1254	3.148	-7.4	NA	-0.57	0.567	0.88									
GDP	M	4.3239	4.3561	-9	84.8	-0.41	0.68	1.29									
GDP	U	4.3327	4.1159	59.5	NA	4.95	0	0.56									
IS	M	0.9707	0.9706	0.4	99.1	0.02	0.984	0.64									
IS	U	0.9649	0.9695	-47.6	NA	-3.2	0.002	2.63									
POPN	M	3.6294	3.6564	-9.4	36.9	-0.43	0.669	2.5									
POPN	U	3.5206	3.5677	-14.9	NA	-1.15	0.253	0.89									

18 Note: t_stat, and Var_ratio are abbreviations for t statistics and variance ratio
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60